• Title/Summary/Keyword: Product Defects

Search Result 374, Processing Time 0.035 seconds

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Voice/Tone Warning System Design for Military Aircraft (군용 항공기를 위한 음성/톤 경고 시스템 설계)

  • Na, Hana;Kim, Do Gyun
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.24-35
    • /
    • 2021
  • High-speed military aircraft shall be able to identify and resolve enemy threats or internal component defects with survival equipment and warning systems to minimize casualties. Warning system is divided into visual method with symbolic display and auditory method with communication equipment, which is superior in that they it has a short response time and does not cause pilot confusion by listening to simple messages. Thus, this paper suggested and evaluated effective design methods of voice/tone warning systems for military aircraft based on a life cycle perspective. Since military aircraft is safety-sensitive, priorities and three properties(Inhibitible, Interruptible, and Deactivatable) were applied to each warning to reflect criticality and urgency. As a result, we confirmed that it took 40ms to play the voice warnings, satisfying all requirements through V model-based development and testing, and improving product reliability.

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

Structural Optimization of Additive/Subtractive Hybrid Machines (3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구)

  • Park, Joon-Koo;Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Ball Grid Array Solder Void Inspection Using Mask R-CNN

  • Kim, Seung Cheol;Jeon, Ho Jeong;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.126-130
    • /
    • 2021
  • The ball grid array is one of the packaging methods that used in high density printed circuit board. Solder void defects caused by voids in the solder ball during the BGA process do not directly affect the reliability of the product, but it may accelerate the aging of the device on the PCB layer or interface surface depending on its size or location. Void inspection is important because it is related in yields with products. The most important process in the optical inspection of solder void is the segmentation process of solder and void. However, there are several segmentation algorithms for the vision inspection, it is impossible to inspect all of images ideally. When X-Ray images with poor contrast and high level of noise become difficult to perform image processing for vision inspection in terms of software programming. This paper suggests the solution to deal with the suggested problem by means of using Mask R-CNN instead of digital image processing algorithm. Mask R-CNN model can be trained with images pre-processed to increase contrast or alleviate noises. With this process, it provides more efficient system about complex object segmentation than conventional system.

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

Analysis of Energy Consumption for Microwave Drying in PC Pellet (PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석)

  • Lee, Hyun Min;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

Quality Improvement of IML Film Injection Molding Method through Structural Analysis (IML 필름 성형공법 제품의 구조해석을 통한 품질개선)

  • Cha, Byung Su;Song, Chul Ki;Cho, Woo Hyun;Yang, Won Ock;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The customer demand for diverse colors in home appliances has increased. However, this has led to issues for manufacturers, such as ensuring cost effectiveness and high-level quality control. To resolve these issues, production engineers utilize computer-aided engineering (CAE) tools for injection-molding processes and assess the suitability of process parameters for products manufactured using the in-mold labeling method. CAE can solve various problems in manufacturing processes, thereby increasing production efficiency and decreasing manufacturing cost. In addition, it can be used analyze customer complaints related to surface defects, such as part differences and irregular spacing between parts, and ultimately reduce product returns. In this study, CAE was used to solve quality problems and implement the most economical manufacturing process.

A study on the prediction of punch wear level through analysis of piercing load of aluminum (알루미늄 홀 가공 하중 분석을 통한 펀치 마모수준 예측에 관한 연구)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.46-51
    • /
    • 2022
  • The piercing process of creating holes in sheet metals for mechanical fastening generates high shear force. Real-time monitoring technology could predict tool damage and product defects due to this severe condition, but there are few applications for piercing high-strength aluminum. In this study, we analyzed the load signal to predict the punch's wear level during the process with a piezoelectric sensor installed piercing tool. Experiments were conducted on Al6061 T6 with a thickness of 3.0 mm using piercing punches whose edge angle was controlled by reflecting the wear level. The piercing load increases proportionally with the level of tool wear. For example, the maximum piercing load of the wear-shaped punch with the tip angle controlled at 6 degrees increased by 14% compared to the normal-shaped punch under the typical clearance of 6.7% of the aluminum piercing tool. In addition, the tool wear level increased compression during the down-stroke, which is caused by lateral force due to the decrease in the diameter of pierced holes. Our study showed the predictability of the wear level of punches through the recognition of changes in characteristic elements of the load signal during the piercing process.

A Study on the Development and Application of an Automatic Injection Type Lubrication System for the Cleaning of the Line Switching Part (선로전환부 청결을 위한 자동 분사형 윤활시스템 개발에 관한 연구)

  • In-Chul Lee;You-Shin Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.455-462
    • /
    • 2023
  • In this study, an automatic spraying lubrication system was developed to maintain the cleanliness of the switchgear when detecting the movement of the track through the switchgear. To develop this system, an air tank, valve block, and spray nozzle were designed, and the safety was secured through the pressure test of the prototype after designing the air tank. Furthermore, the environmental aspect was considered by minimizing the use of lubricant by enabling the mixing of air and lubricant through the production of a valve using the Venturi principle. The performance evaluation was conducted by implementing (producing) the injection system, and the product developed in this study was deemed installable in actual switchgear. It is expected that the proposed system will enable the maintenance of the cleanliness of the track during switching and reduce faults and malfunctions caused by switchgear defects.