• Title/Summary/Keyword: Processing process

Search Result 10,856, Processing Time 0.047 seconds

Hot Forming Design of a CAM for Vessel Engine (선박엔진용 캠의 열간 성형공정설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.417-420
    • /
    • 2009
  • The hot forming process of a CAM for vessel engine was designed by finite element (FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and flow stability and/or instability criteria. From the processing map, the initial heating temperature was determined as $1200^{\circ}C$. FE analysis was simulated to predict the formation of rolling defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

  • PDF

A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis (반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구)

  • Min, Byeong-Hyeon;Lee, Kyeong-Don;Yu, Byung-Kil
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF

Plug Manufacturing of Leisure Boats through the NC Processing (NC가공을 통한 레저보트의 플러그 제작)

  • Park, Gen-Ong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.606-612
    • /
    • 2010
  • This study took advantage of NC processing technique in order to recreate design in development process of leisure boat based on the Korean boats and ships. CNC milling is an area which is concerned in automation process of boat production and needs sophisticated software, equipment and professionals to pilot it. The progress of manufacture begins when the surface model creation and simulation being done using CAD/CAM software. In this process, the needs such as 3D design, NC processing data, plug lamination and partition processing appear as detailed steps. The study completed these detailed steps and also the application example has been studied with presenting engineering potentialities.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Analysis of Various Acoustic Emission Signal for the Automatic Detection of Defective Manufactures in Press Process (프레스 공정에서의 불량품 자동 검출을 위한 다양한 음향방출 신호의 분석)

  • Kim, Dong-Hun;Park, Se-Myung;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.14-25
    • /
    • 2010
  • Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena became the cause of not only defective product but also damage of a press mold. In order to solve this problem AE(Acoustic emission) system was introduced. AE system was expected to be very effective to real time detection of the defective product and for the prevention of the damage in the press molds In this study, for the pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For the analysis and processing the AE signals picked in real time from the normal or the detective products, specialized software called AE-win(software for processing AE signal from Physical Acoustics Corporation) was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight of the press and thickness of sheet and process type.

A Study on High Contraction Conditions by the CPB Process of the Nylon Fabric (Nylon 박지의 CPB방식에 의한 고수축 조건에 관한 연구)

  • Bin, Soyoung;Kim, Dong Kwon;Baek, Yongjin;Jin, Sungwoo;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • This study is the high contraction processing conditions set by the method of the CPB process. And the ultimate goal of this study is the high contraction of the CPB processing test method that can solve the problems of the high-contraction fabric processing method of the current jet dyeing machine. Non-coating process(CPB process) developed by the expression of a soft touch, light weight, functional and to develop excellent breathable nylon fabric. The nylon fabrics established the optimum processing conditions through the high contraction of the various test conditions, the CPB system.(The benzyl alcohol was used as the main constrictor.) At this time, the warp and weft contraction of nylon fabric was about 20%. And it established the constrictor concentration, the treatment temperature, time of a variety of tests. Also non-coating process(CPB process) can develop soft touch, lightweight, excellent air permeability. As a result, we developed a high contraction nylon fabric having a uniform surface. Manufactured fabric is used for Wind-proof and Down-proof.

The Design of Parallel Processing S/W Using CUDA for Realtime 3D Laser Ladar Imaging System (실시간 3차원 레이저 레이더 영상 생성을 위한 CUDA 기반 병렬처리 소프트웨어 설계)

  • Cho, Yong Il;Ha, Choong Lim;Yang, Ji Hyeon;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, we propose a CUDA(Common Unified Device Architecture) based SW(software) design method for CPU(Central Processing Unit) and GPU(Graphic Processing Unit) parallel structure to implement real-time process in 3D Laser ladar(LADAR) imaging system. LADAR is a complex system to generate 3-dimensional image based on the laser ranging information, and requires massive process resources in each phase. Therefore, designing and implementing parallel structure are crucial to realize a real-time process within limited system resource. As a conclusion, we can meet the speed of required real-time process allocating separable work load to CUDA GPU by analyzing process algorithm in each phase and confirm the process speed increase by 46%.

광조형을 이용한 마이크로가공에 관한 기초적인 연구

  • 김동욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.161-165
    • /
    • 1996
  • Recently, with a great interest in micromachine, it is more and more important to promote the way of manufacturing micromachine. The silicon process or the LIGA process was the main way to manufacture micromachine in the past. Because these processing method was 2.5-dimensional, there was the limit in processing perfect three-dimensional micromachine. In this study, we developed the rapid prototyping system for micromachine and tested its property. We also realized .mu. m - order processing and three-dimensional structure processing. The results showed the possibility of manufacturing micromachine with the rapid prototyping system

  • PDF

Development of Shape refining process of VLM-ST Parts Using Noncontacting Hot Tool (비접촉식 열공구를 이용한 VLM-ST 제품의 미세 형상 가공 공정 개발에 관한 연구)

  • 김효찬;이상호;안동규;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.149-158
    • /
    • 2004
  • In most RP processes, the inherent stair-stepped surfaces and shrinkage-induced warping of the parts require post processing such as surface finishing. To minimize such defects, VLH-ST, a newly developed RP process, employs a 3.9-mm thick expandable polystyrene (EPS) foam sheet and a hot wire to contour it to have slant linear-interpolated sides. The use of relatively thick sheets for layers, however, limits the process capability of constructing fine details, especially smaller than the layer thickness. This study is focused on the development of a post processing method fo fine details of VLM-ST parts. The post-processing tool was designed to meet all the requirements for the desirable post processing. It adopted a hot wire as a means of melting the EPS foam sheet. Various basic experiments on the post processing were carried out to obtain the optimal process conditions. The dominant process parameters such as the radiated heat input, the tool speed, and the gap between the tool tip and the foam sheet (tool height) were considered in the experiments. The effectiveness of the developed post-processing method fo forming or engraving fine details on the VLM-ST parts has been thus demonstrated. The experiments on engraving several sets of letters, such as CANESM, 인간, and 한국과학기술원, on the EPS foam sheet were carried out. In addition, a flowery shape was engraved on a three-dimensionally curved surface of a pottery-shape VLM-ST part.