• Title/Summary/Keyword: Processing element

Search Result 1,751, Processing Time 0.032 seconds

Motion Estimation Specific Instructions and Their Hardware Architecture for ASIP (ASIP을 위한 움직임 추정 전용 연산기 구조 및 명령어 설계)

  • Hwang, Sung-Jo;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.106-111
    • /
    • 2011
  • This paper presents an ASIP (Application-specific Instruction Processor) for motion estimation that employs specific IME instructions and its programmable and reconfigurable hardware architecture for various video codecs, such as H.264/AVC, MPEG4, etc. With the proposed specific instructions and hardware accelerator, it can handle the real-time processing requirement of High Definition (HD) video. With the parallel operations and SAD unit control using pattern information, the proposed IME instruction supports not only full search algorithm but also other fast search algorithms. The hardware size is 77K gates for each Processing Element Group (PEG) which has 256 SAD PEs. The proposed ASIP runs at 160MHz with sixteen PEGs and it can handle 1080p@30 frame in real time.

Array Localization for Multithreaded Code Generation (다중스레드 코드 생성을 위한 배열 지역화)

  • Yang, Chang-Mo;Yu, Won-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1407-1417
    • /
    • 1996
  • In recent researches on thread partitioning algorithms break a thread at the long latency operation and merge threads to get the longer threads under the given constraints. Due to this limitation, even a program with little parallelism is partitioned into small-sized threads and context-swithings occur frequently. In the paper, we propose another method array localization about the array name, dependence distance(the difference of accessed element index from loop index), and the element usage that indicates whether element is used or defined. Using this information we can allocate array elements to the node where the corresponding loop activation is executed. By array localization, remote accesses to array elements can be replaced with local accesses to localized array elements. As a resuit,the boundaries of some threads are removed, programs can be partitioned into the larger threads and the number of context switchings reduced.

  • PDF

Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design (골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가)

  • Park, H.S.;Chun, H.J.;Youn, I.C.;Lee, M.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Automatic Mesh Generation System for FE Analysis of 3D Crack (3차원 균열의 유한요소해석을 위한 자동요소분할 시스템)

  • Lee, Ho-Jeong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2183-2188
    • /
    • 2009
  • This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press (대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구)

  • Seung-Soo Kim;Chul-Jae Jung;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.

An Analysis of Media of Social Studies 1 Textbooks for the Middle School with the Information Processing Model (정보처리모형을 이용한 중학교 『사회 1』 교과서 수록 매체 분석)

  • Song, Gi-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.5-27
    • /
    • 2019
  • The purpose of this study is to analyze the media of middle school social studies 1 textbooks with the information processing model and to suggest educational information services of teacher librarians under a collaborative Instruction. For this purpose, 1,089 inquiry tasks embedded in 8 types of textbooks for middle school social studies developed under the 2015 revised curriculum were analyzed. The media as an input element was analyzed by the type and the characteristic as a processing element was analyzed by the cognitive behavior types. And the aspect of the output factor of the media utilized the multiple intelligences. As a result of the analysis, the media in the inquiry task solving process mainly consisted of visual media based on photographs and illustrations and general reading materials. The processing method of media is understanding through analysis and inference through structuring. And the output utilized speaking and writing of the language intelligence. Based on the results, it is shown that educational information services that teacher librarians could provide for inquiry activities are composed of developing curriculum map, teaching inquiry processing and skills, and designing work sheets with graphic organizer and multiple intelligences under the information processing steps.

The Analysis of Flight Data Processing System (비행자료 처리시스템 분석)

  • Kim, Do-woo;Oh, Seung Hee;Lee, Deok Gyu;Lee, Seoung Hyeon;Han, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.785-788
    • /
    • 2009
  • The flight data processing system is the system which processes and manages all flight related data for the aircraft control and performs the trajectory modeling. It takes charge of the role of performing the core function of the integrated information processing system for the flight control. For the safe aircraft's flight, the information transfer and exchange among air traffic control units are the essential element through the flight data processing. Therefore, for the development of the flight data processing system we are going to analyze its function and look into the necessary consideration in a design in this paper.

  • PDF

Functionality-based Processing-In-Memory Accelerator for Deep Neural Networks (딥뉴럴네트워크를 위한 기능성 기반의 핌 가속기)

  • Kim, Min-Jae;Kim, Shin-Dug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.8-11
    • /
    • 2020
  • 4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.