• Title/Summary/Keyword: Processing element

Search Result 1,750, Processing Time 0.024 seconds

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Deformation Mechanism of the Roller Hemming Process with the Finite Element Analysis (유한요소해석을 이용한 롤러헤밍 공정의 변형기구 분석)

  • Rho, J.D.;Kwak, J.H.;Kim, S.H.;Ju, Y.H.;Kim, J.H.;Shin, H.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In this paper, a three-dimensional part model is constructed for the finite element analysis of hemming models where hemming defects frequently occur. The roller path is modeled as the boundary condition with the one-dimensional beam element and the revolute joint model. With the constructed part model and the roller movement, a finite element analysis has been pursued in order to identify the hemming load and hemming defects such as wrinkling in the flange region. The analysis result shows that the maximum hemming load occurs in the intake situation while oscillatory behavior of the load is found especially when hemming the curved model because of wrinkle generation. This paper compares the amplitude and the period of wrinkle between the analysis result and the experiment, which shows good agreement with each other.

The Elasto-Plastic Finite Element Analysis of Ductile Fracture in Shape Rolling (형상압연시 연성파괴의 탄소성 유한요소해석)

  • 원영목;오규환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • During the shape rolling process the influence of reduction ration and taper of shape roller on deformation and limit of ductile fracture such as free surface cracks developing in the workpiece has been studied. The deformation behaviours were analyzed by the 3-dimensional elasto-pastic finite element method and the conditions of ductile fracture were determined from 3-dimensional elasto-plastic finite element method and modified Cockrogt-Latham criterion. The deformed geometry and prediction of ductile fracture by 3-dimensional elasto-plastic finite element method are compared with experimental results The calcuated results are in good agreements with experimental data. The analysis used in the study was found to be effective in predicting the shape rolling process.

  • PDF

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy

The effects of different factors on obstacle strength of irradiation defects: An atomistic study

  • Pan-dong Lin;Jun-feng Nie;Yu-peng Lu;Gui-yong Xiao;Guo-chao Gu;Wen-dong Cui;Lei He
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2282-2291
    • /
    • 2024
  • In this work we study the effects of different factors of dislocation loop on its obstacle strength when interacting with an edge dislocation. At first, the interaction model for dislocation and dislocation loop is established and the full and partial absorption mechanism is obtained. Then, the effect of temperature, size and burgers vector of dislocation loop are investigated. The relation between the obstacle strength and irradiation dose has been established, which bridges the irradiation source and microscale properties. Except that, the obstacle strength of C, Cr, Ni, Mn, Mo and P decorated dislocation loop is studied. Results show that the obstacle strength for dislocation loop decorated by alloy element decreases in the sequence of Cr, Ni, Mn, C, P and Mo, which could be used to help parameterize and validate crystal plasticity finite element model and therein integrated constitutive laws to enable accounting for irradiation-induced chemical segregation effects.

A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis

  • Cao, Zongjie;Liu, Yongyu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.321-336
    • /
    • 2012
  • As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.

Finite Element Inverse Analysis of the Deep Drawing Process Considering Bending History (굽힘이력을 고려한 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.590-595
    • /
    • 2007
  • This paper introduces a new approach to take account of bending history in finite element inverse analysis during sheet metal forming process. A modified membrane element was adopted for finite element inverse analysis so that bending-unbending energy was additionally imposed in the total plastic energy, predicting bending-unbending regions using the geometry of the final shape and tools. An algorithm was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain were compared with those obtained from the incremental finite element analysis in order to evaluate the effect of the bending history. The algorithm reduced the difference between the results of the inverse analysis from those of the incremental analysis due to bending history. The analysis was also carried out with the variation of the thickness of the initial blank to investigate the effect of bending deformation. The results showed that the difference was remarkably reduced as the thickness of the initial blank increased. This indicates that the finite element inverse analysis cooperated with the suggested scheme is useful to obtain more accurate results, especially when bending effects are significant.

A New Era of Space Shuttle

  • Sun Kyu Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The U.S. Space Shuttle represents the beginning of a new era in transportation and is the critical element in the industrialization of the near-Earth-space. Most of its flights are dedicated to reducing costs launching commercial satellites. However, it provides a microgravity environment for processing unique and improved materials which is generating great interest in both civilian and military sectors. The space shuttle is also the necessary step in establishing a permanent space station which could host materials analysis laboratories and commercial processing facilities. This paper reviews the different elements of the space shuttle transportation system, a typical mission scenario, and discusses current activities in materials processing in space.

  • PDF

Implimentation of Parallel Procssor System with Reliability (신뢰성을 고려한 병열프로세서에서 구성)

  • 고명삼;정택원
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.355-360
    • /
    • 1982
  • In numerical computation, it is desirable to access any row or column, the main diagonal, subarrays, of a matrix without any conflict for successful parallel processing. To meet this requirement special storage scheme is used for conflict-free access of necessary data. Interconnection network, which connects processing elements and processing element memory modules, is required to execute the necessary operations. In this paper we discuss the skewing method for conflict-free, access to various bit slices and single-stage interconnection networks.

  • PDF