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Implimentation of Parallel Processor System with Reliability

—Conflict-free Access of Data and Memory Processor Interconnection Network—
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Abstract

In numerical computation, it is desirable to access any row or column, the main diagonal, subarrays
of a matrix without any conflict for successful parallel processing. To meet this requirement special

storage scheme is used for conflict-free access of necessary data.

Interconnection network, which connects processing elements and processing element memory
modules, is required to execute the necessary operations.

In this paper we discuss the skewing method for conflict-free access to various hit slices and

single-stage interconnection metworks.

1. Introduction

As the switching speed of the computing devices
approach a limit, paralle] processing has been consi-
dered to improve the computer throughput.

Each processor in parallel processing computer
system must be processed independently for success-
ful parallel processing. This requires that each pro-
cessor can be able to accesss necessary data with-
out any conflict. This requirement may be satisfied
by using many memory modules. Each memory mo-
dule operates independently so that accesses to
different modules can be overlapped to improve the
overall performance of the computer.
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To meet this requirement, Kuck®’ discussed ske-
wing storage scheme of data which was proposed
by Lawrie.” Lawrie considered skewing storage
scheme when the number of processors is an even
power of two.

The skewing method results data not in the order
Thus, it is
necessary to unscramble the data so that they are

when fetched from memory modules.

in the correct order.

Unscrambling of data means the realization of a
permutation. Therefore an interconnection network
is required to realize a permutation.

There are some interconnection networks. The tr-
aditional N XM crosshar switch can be used as int-
erconnection network. But this network is too expe-
nsive to use in large systems.

Clos’s network is another one but control proce-
dure for parallel processing is not known. This
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network is a three stage network constructed from
crossbar switches.

The other interconnection network is the rearran-
geable switching network by Benes."? The time
delay for this network is too long to use in parallel
processing.

To satisfy the need for low cost and a little time
delay, Lawrie'® proposed a network called omega
network. Lawrie’s network is a generalization of
shuffle-exchange network by Stone,®

Lang'” modified Lawrie’s network to perform
some permutations in less steps than Lawrie’s net-
work.

Lang and Stone® modified Lawrie’s network so
that the modified network has destination tag of one
bit per processor.

In this network, the control variables at step &
are determined by a very simple Boolean function
of the step at £~1. Thus, the control requires a
single bit per datum as compared to log,N bits per
datum in the original procedure.

All of these networks are multi-stage network
and requires much time delay to realize the given
permutation. Pradhan and Kodandapani®® presented
single-stage networks and multi-stage networks wh-
en the number of processors and the skewing dista-
nce are co-prime. In this paper we discuss on the
following problems;

1. skewing storage scheme when the number of

processors is an odd power of two

2. single-stage network for scrambling/unscramb-

ling of f-ordered vector when the skewing dis-
tance ¢ and the number of memory modules are
not co-prime.

2. Computer Model

We assume that the computer model proposed in
this paper is a single instruction multiple data stre-
am(SIMD) machine and is given by Fig.l. The co-
mputer consists of an instruction decoding and con-
trol unit, N processing elements, M memory modu-
les and an interconnection network.

The single instruction is read and decoded by the
instruction decoding and control umit. Instructions
for the control unit are executed there. And instruc-
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Fig. 1. Computer model

modules

tions for processing elements are sent to processing
elements, and all processing elements execute the
same instruction simultaneously.

Each processing element has an index register
and the address of the operand can be obtained by
adding the content of this register to the address
in the instruction. Therefore every processing elem-
ent fetch a word from its own memory by a single
Joad instruction. As a result is that a vector of data

will be able to be fetched in one memory access.

3. Date Storage

It is assumed that data are processed ia the form
of N-vector. Since, it is usual to handle matrices
by rows, columnus, diagonals, or blocks for numerical
applications. There fore much attention has been
paid to stroage schemes that allow conflict-free acc-
ess to these subarrays.®“® Thus, it is necessary to
store all the elements in any row, column, diagonal,
and block in different memory module.

Budnik and Kuck“® used 22L+1 memory modules
with positive integer L to store arrays so that rows
or columns, the main diagonal and square subarrays
could all be fetched with a single memory access.
Fig. 2 shows an example of Budnik and Kuck.
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rzmory modules
sddress [\ ] ! 3 4
0 2 0 ag | a2 303
! a4 40 a1 3.2
2 ay 4 a9 27 3 a0
3 130 33 232 33

Fig. 2. 4x4 matrix stored with 2L?L4+1 memory

modules where L=1

This example shows that any row or column, the
main diagonal, and all 2X2 subarrays can be fetch-
ed with one memory access. When a column is fetc-
hed, the element of the column are not in the proper
order. Elements that should be adjacent are two
memories apart. This results a 2-ordered vector.

In the #-skewing by Kuck,® the data are stored
f-memories apart from the previous data. This res-
ults a t-ordered vector when fetched from memory.
Thus, the i-th element of the vector is stored in
memory module numbered #; mod M where M is the
number of memory modules.

In Lawrie's® (fy, £z, <vor=y iy eeees, £,) skewing,
{; is the skewing distance in the 7-th dimension.
Thus, for a two dimensional N X N matrix, rows are
columns are f,-ordered, the forward

and the backward

t,~ordered,
diagonals are (#,+¢,)-ordered,
diagonals are (f,—,)-ordered.

By Lawrie®, a sufficient condition for a ¢-order-
ed N-vector to be accessible without conflicts can
be represented by equation.

M>N ged (¢, M) (€V]
where gcd (¢, M) represents the greatest common
divisor of ¢ and M.

Lawrie considered (N 54—1, 2) skewing where N
represents the number of processor and N is an
even power of two. This results conflict-free access
of any row or column, the forward diagonal, the ba-
ckward diagonal with M=2N. But the skewing
distance by Lawrie is not unique. Using (N %+2, 1)
skewing, we can get the same results as Lawrie’s,

If N is an odd power of two, Lawrie’s (Né—‘rl,Z)
skewing can not be applied because N t is not inte-
ger. We considered the case when N is an odd

power of two.
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Theorem 1.

Assume the number of processor N to be an odd
power of two and the number of memory modules
M=2N. If p is the maximum value in p»’ where p’
satisfies the equation (2)

ged(p, M)=2, 5 <N} @

Then we have conflict-free access of rows or
columns, the forward diagonals, the backward dia-
gonals when stored using(p,1) skewing or(p+1,2)
skewing.

proof; When(p, 1) skewing is used, rows are p-—
ordered and columns are l-ordered. And the forw-
ard diagonals are (p-+1)-ordered, the backward di-
agonals are ( p—1)-ordered.

ged (p, M)=2,
ged (1, M)y=gcd (p+1, M)=gcd (p—1,M)=1.

Thus, the sufficient condition of equation (1) is
satisfied.

Theorem 2.

Let p, M and N, be the same as in Theorem 1.
Then and pXxp subarray of NXN matrix can be
accessed in a single memory access.

proof; The elements of the pXp block a;,;,a:,is1,

ave

Sy Qi p -1,y Tivp-1,0+13 """

sesey @i iape1s Girt iy Qist, ja1moer
@ivp-1,ivs-1 Will be stored in memory modules num-
bered M, .= +2Vp+(+x*) mod M=({+zHp
+(j+x?) mod 2N for 0<<z!, z*<p. We need only
show that these memory modules are distinct. In

other words it is necessary to show that
M., .2 2NM e iff 2'=p' and z?=y*
for 0<Zat, 2% ¥%, ' <p where a==c means that there
b

exists an integer k such that e=c+4kb.

Assume that M,, .,.2NM,, y..

Rearranging gives

(28— p2Ny — ©)
Without loss of generality we may assume that
a'—y'>0

case 1. z'—y'=0
Since 2N >y?—x>—2N, the Equation (3) gives
¥y —z=0.
case 2. x'-—y>-0
a) y'—zx¥>0
By using the relations 2N> (2'—3y)p>0 and 2N >
y*—z? Equation (3) gives
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(@ =y p=yi=a’
Since that (a'-—y)p—(y*—z%)>0,
can not be satisfied.

b) y*—x*<0
By using the relations 2N >2N+(y*—x*)>0, Eg-
qation (3) can be written

(' —y)p=2N+(y'— %

There are no z', x% %, v* satisfying this equation
because of @N+y*—2")—(z'—y"p> 0.
¢) y*—z*=0

this equation

above ¢qluation gives
z'— y'=0.
Proof is completed.

4. Interconnetion Network

As shown in section 3, data not in the order

when fetched from the memory modules. This reg-
uires the reordering of data to execute the necess-
ary operations. Therefore the interconnection network
is very important in parallel processing.

In the fcl)llowing, we give a brief review of some
interconnection networks.

(A) Lawrie's omega network

Lawrie proposed a network consisted of log,N
identical sl'_iuffle exchange networks.

The permutation p is usually represented as (7,
2(@), where p(:) represents the mapping of 7,0<
i<<{N—1. The shuffle network performs the perfect
shuffle permutation expressed in equation(4).

p()=2{ mod N (€]
And the exchange network exchanges two data if
-exchange operation is ordered by a control bit. Fig.
3 shows an 8X8 omega network.

Let (S, D) be the permutation to be realized. We
say that S is the source tag and D the destination
tag. Assume that s,s,-1-++51 and d.d,-1d; are the
binary representation of S and D, respectively ‘wh-
ere n=log,N

At first stage S is switched to
the shuffle network and s,.15,-2+5:15, 18 switched to

the upper (lower) output of the exchange network if

Sn-18a-2"**515. DY

d,=0(d.,=1). After passing » shuffle exchange ne-

tworks, input S is connected to output D. Fig. 4

shows the comnection (011, 0i10) and (010, 100)
The omega network can not realize all permutat-
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Fig. 3. 8x8 omega network

ions because of conflicts. Fig. 5 shows an example
of conflicts. Lawrie showed that the omega network
can produce uniform shifts and unscrambling of -
ordered vectors where ¢ is odd. We will show that
we can unscramble ¢-ordered vectors withe ¢ even

by single-stage network as follows.
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Fig. 4. Connection (011,010) and (010, 110)
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(B) Single-Stage Network

Multi-stage networks have much time delay. Pra-
'dhan and Kodandapani proposed single stage net-
works to shorten the time delay. They considered
‘perfect shuffle network, uniform shift network,
plus-minus 2*(PM2I) network and scrambling/unscra
mbling network.

The scrambling/unscrambling means the realizat-
‘ion of a Qe}jmutatidn of the type

p(D=ti mod N.
Pradhan and.Kodandpani discussed the case when ¢
and the number of processors N are relatively pri-
me. If we use (p,1) skewing in section 3, the re-
sult of Pradhan and Kodandapani can not be applied
‘because the greatest common divisor of p and N is
not 1. Hence we considered the case when p and
the number of memory modules M are not relative-
ly prime, which can be applied to the case when
ged (p, M) is not 1.

The Boolean difference of g(Tw Za-1, ***s Tiy > 21)
with respect to :‘c. is written dg/dx; and defined by
~ the follc;wing ’e‘quatioh:

dgldz=g(zn + 2i=1, ) 2) D8 (Twy *0 T
=0, 3)
where @, is the exclusive-OR operator.

In the folloyvir)g’, .t,t,_l---t, is used for the binary
represéntati'c)n‘; 'vof a number t. Any permutation p
=y (;an”bé represented by » functions j,, 1<k
n, where i:i,.i,,‘_l.---.z'1 and j=jaja-1"7j1. We give a
theorem about switc‘hing functions when the great-
est common divisor of ¢ and M is not 1 where ¢ is
the skewing distance and M is the number of me-
mory .m‘o_dules.

Theorem 3. Aséume gcd(t, M)=2". Then, the
functions fs, 1£E§m+n, that represent the permu-
tation expressed as

) =ti mod M
can be written as

Jnim= 2D gntn(Ens fn-1y > 71)

7:=0, 1<k<m
and the other functionS Jasm-1y Jatm-25 ***s Jm+1 ATE YE-
lated by the following recursive rule such that

It

jkzilu-m@gi(im fa-1y***y £1)
“then
jl-1=ih-m-1®dgh/dih—m»1®tm+2

where
t=tlu-1"""t1e
proof; Since ged (¢, M)=2",¢ can be expressed as
t=tptn1bn-2"*"tms2100:+:0,
From the multiplication table of Table 1, we get’
jn+m=t.+1i.®tm+zin-1@“'@tuiu+1@cn+n
=10 Dgntm(Eny fmy =5 £1)
Intx=te118aDlis 2t n 1D DCrix
- n Db mrrinti-n-1D Bt 41 DCuia
=L ati-mDGuts(fnsy fnmry oy 61) 6)
Tnti-1 =l nDlirrln 1D Dbl s PCrrar
=tntn-m-1Dlmt2lnts-m-2D Dl BCrrr-1
D
Table 1. Multiplication table

iy i3 i, 7

tn ts t; t

Brfgeerees 6y hiy by
Lrsilnrenee T FUSY ARTITES Folgogrerese by taf
NPT INRTLY J9PY SURELHY ¥ SIPSLRILL taty
. eeeene o emeies . C,
tnim-i-l ...... tnii+1"""tul.1
Chsm oo Crsg orees C.
jn+m jn+lr jn ja jz jx

In Table 1, for 3<k<n+m, C, represent the ca-
rry bits generated during the summation of £—1
columns from right. Equation (6) gives

Zusi—tmitbntr-m-1Dlntalnii-m-2D Dl 141D Crss

Hence,

Aguiil Ainti-m- 1=t 2DACoia/ digin—m-1 ®

C.+: can be expressed as

Catk=Clats®C% s
where C',,, represents the carry bit generated in
the addition of (#—1) st column only from right
and C?,,, represents the EX-OR sum of the carry
bits generated in the addition of j-th columns from
right, 2<j<k—2. Thus,
dcn+h/din+h-m—lzdc1n+h/dt-n+h—m-l
Table II shows that
dC sl dlnsh-m-1=tmrslnth-n-2DEmrslntn-m-3D
"'@tnih®cn+h>l (9)
Equations (7)(8) and (9) give
ju+h-1=in+h—m-l@dgu+ﬁ/din+k-m-1®tn+2
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Similarly, we can get the same result for j, and
Ju-1y, #Zk>m4+1,

Table 2. The truth table for dC' 44/ dZntr-m-1

P CLhiilinriar=1) Casalnsaon-1=0) dCi/dinys-m-1

42 0 0 0
4z+1 1 0 1
4242 1 1 0
4z+3 0 1 1

In Table 2, p ¢s the number of I's in Zuip-pm-1,

toislnst-m-25 % Enfay Cnas-1- And z is any integer.

5. Conclusion

We showed that the skewing method yields con-
flict-free access of rows, columns, diagonals, and su-
barrays of a matrix when the number of processors
is an odd power of two if the skewing distance is
properly determined.

The switching ‘functions representing the single-
stage interconnection network for scrambling/unsc-
rambling are developed when the skewing distance
and the number of memory modules are not relati-

vely prime.
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