• Title/Summary/Keyword: Processing Method

Search Result 18,099, Processing Time 0.047 seconds

Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields (딥러닝 기반 옥수수 포장의 잡초 면적 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Wan-Gyu Sang;Ho-young Ban;Sungyul Chang;Jae-Kyeong Baek;Yun-Ho Lee;Woo-jin Im;Myung-chul Seo;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Weeds are one of the factors that reduce crop yield through nutrient and photosynthetic competition. Quantification of weed density are an important part of making accurate decisions for precision weeding. In this study, we tried to quantify the density of weeds in images of maize fields taken by unmanned aerial vehicle (UAV). UAV image data collection took place in maize fields from May 17 to June 4, 2021, when maize was in its early growth stage. UAV images were labeled with pixels from maize and those without and the cropped to be used as the input data of the semantic segmentation network for the maize detection model. We trained a model to separate maize from background using the deep learning segmentation networks DeepLabV3+, U-Net, Linknet, and FPN. All four models showed pixel accuracy of 0.97, and the mIOU score was 0.76 and 0.74 in DeepLabV3+ and U-Net, higher than 0.69 for Linknet and FPN. Weed density was calculated as the difference between the green area classified as ExGR (Excess green-Excess red) and the maize area predicted by the model. Each image evaluated for weed density was recombined to quantify and visualize the distribution and density of weeds in a wide range of maize fields. We propose a method to quantify weed density for accurate weeding by effectively separating weeds, maize, and background from UAV images of maize fields.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

An Importance Analysis on the NCS-Based Skin Care Qualification L3 Level of Education in Life Care (라이프케어의 피부미용 NCS기반 자격 L3수준의 교육 중요도 연구)

  • Park, Chae-Young;Park, Jeong-Yeon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.5
    • /
    • pp.263-271
    • /
    • 2019
  • The recent phenomenon of job "Miss Match", which is inconsistent with knowledge in the demand of educational training institutes and industries, has spread to an increase in private education costs for reeducation and employment of new hires, resulting in weak individual job competency and poor employment capability, as well as economic and material waste at the national level. To compensate for these problems, the National Competency Standards(NCS), which are available immediately in practice and look for a standard point of national job competency with the aim of fostering human resources sought by industries, were developed, and even the NCS-based qualification system was launched in line with the stream of times. This study is intended to look into the importance and priority of competency units and competency unit elements at the NCS-based qualification L3 level in the skin care field for an overall check of the NCS-based qualification level at a time when educational institutes are organizing and operating the school curriculums according to the NCS and NCS-based qualification level. And it is attempted to provide basic data for the development of curriculum in fostering professional human resources required by industries. To analyze the needs for competency units and competency unit elements at the L3 level, a survey using AHP method was carried out to a group of field experts and a group of education experts. In addition, the SPSS(Statistical Package for Social Science) ver. 21.0 and Expert Choice 2000, an AHP-only solution was used to do statistical processing through the processes of data coding and data cleaning. The findings showed that there was a partial difference of opinion between a group of field experts and a group of education experts. This indicates that the inconsistencies between educational training institutes and industrial sites should be resolved at this time of change with the aim of fostering field customized human resources with professional skills. Consequently, the solution is to combine jobs at industrial sites and standardized educations of educational institutes with human resources required at industrial sites.

Text Mining of Successful Casebook of Agricultural Settlement in Graduates of Korea National College of Agriculture and Fisheries - Frequency Analysis and Word Cloud of Key Words - (한국농수산대학 졸업생 영농정착 성공 사례집의 Text Mining - 주요단어의 빈도 분석 및 word cloud -)

  • Joo, J.S.;Kim, J.S.;Park, S.Y.;Song, C.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.57-72
    • /
    • 2018
  • In order to extract meaningful information from the excellent farming settlement cases of young farmers published by KNCAF, we studied the key words with text mining and created a word cloud for visualization. First, in the text mining results for the entire sample, the words 'CEO', 'corporate executive', 'think', 'self', 'start', 'mind', and 'effort' are the words with high frequency among the top 50 core words. Their ability to think, judge and push ahead with themselves is a result of showing that they have ability of to be managers or managers. And it is a expression of how they manages to achieve their dream without giving up their dream. The high frequency of words such as "father" and "parent" is due to the high ratio of parents' cooperation and succession. Also 'KNCAF', 'university', 'graduation' and 'study' are the results of their high educational awareness, and 'organic farming' and 'eco-friendly' are the result of the interest in eco-friendly agriculture. In addition, words related to the 6th industry such as 'sales' and 'experience' represent their efforts to revitalize farming and fishing villages. Meanwhile, 'internet', 'blog', 'online', 'SNS', 'ICT', 'composite' and 'smart' were not included in the top 50. However, the fact that these words were extracted without omission shows that young farmers are increasingly interested in the scientificization and high-tech of agriculture and fisheries Next, as a result of grouping the top 50 key words by crop, the words 'facilities' in livestock, vegetables and aquatic crops, the words 'equipment' and 'machine' in food crops were extracted as main words. 'Eco-friendly' and 'organic' appeared in vegetable crops and food crops, and 'organic' appeared in fruit crops. The 'worm' of eco-friendly farming method appeared in the food crops, and the 'certification', which means excellent agricultural and marine products, appeared only in the fishery crops. 'Production', which is related to '6th industry', appeared in all crops, 'processing' and 'distribution' appeared in the fruit crops, and 'experience' appeared in the vegetable crops, food crops and fruit crops. To visualize the extracted words by text mining, we created a word cloud with the entire samples and each crop sample. As a result, we were able to judge the meaning of excellent practices, which are unstructured text, by character size.

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

The Impact of Entrepreneurship Education on Entrepreneurial Intentions and Entrepreneurial Behavior of Continuing Education Enrolled Students in University: Focusing on the Mediating Effect of Self-efficacy (창업교육이 성인학습자의 창업의지와 창업행동에 미치는 영향: 자기효능감 매개효과를 중심으로)

  • Yu, So Young;Yang, Young Seok;Kim, Myung Seuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.107-124
    • /
    • 2023
  • As getting in 4th Industrial Revolution Times, Continuing Education Enrolled Students(CEES) trying to find loophole for jepordized current life and need job transfer have surged their interest significantly on starting new business to bring up their post career after retirement through self-improvement. Government and university have actively initiated diverse policies of promoting startup for CEES in kicking off entrepreneurship courses and programs. However, relevant main policy, 'The 2nd University Startup Education Five-Year Plan (draft)' have too chiefly focused on theoretical start-up education rather than practical courses, causing the problem of inappropriate support for implementing real startup and business (Ministry of Education, 2018). This study is brought to empirically investigate the effect of self-efficacy as perspective of the impact of entrepreneurship education on entrepreneurial intention and behavior to come up with problem of poor entrepreneurial environment and entrepreneurship education to CEES. As to empirical research, this paper deliver on-line survey to CEES from September to October 2022, collect 207 effective feedbacks, In order to verify the reliability of the scale, the Cronbach's Alpha Coefficient (Cronbach's α) was calculated, analyzed, and measured. For hypothesis test, this paper utilize the multiple regression analysis statistical analysis method and use the SPSS 22.0 statistical processing program. Empirical results show, first, it was found that self-efficacy had a significant effect on start-up education. Second, start-up education had a significant effect on the intention to start a business of adult learners. Third, start-up education had a significant effect on the start-up behavior of adult learners. Fourth, self-efficacy had a significant effect on the intention of adult learners to start a business. Fifth, self-efficacy had a significant effect on the start-up behavior of adult learners. Sixth, self-efficacy had a mediating effect in the relationship between entrepreneurship education and adult learners' intention to start a business. Seventh, self-efficacy had a complete mediating effect in the relationship between start-up education and adult learners' start-up behavior. This paper is brought three significant implications. First, main consideration developing entrepreneurship education tools for CEES need to falls on defining potential needs of CEES as segmenting as to coming up with diversity of CEES's characteristics such as gender, age, experience, education, and occupation. Second, as to design specific entrepreneurship education program, both practical training program of utilizing CEES's career field experience benchmarking best practice startup and venture cases from domestic and global, and professional startup program of CEES initiating directly startup from ideation to develop business plan with pitching and discussing. Third, entrepreneurship education for CEES should be designed to incubate self-efficacy to enhance entrepreneurial intention of implementing entrepreneurial behavior as a real, eventually leading solid support system of self-improvement for CEES' Retirement life planning.

  • PDF

Analysis of the Reduction Effect of Combined Treatment with UV-C and Organic Acid to Reduce Aspergillus ochraceus and Rhodotorula mucilaginosa Contamination (Aspergillus ochraceus와 Rhodotorula mucilaginosa 저감을 위한 자외선과 유기산 복합처리 효과 분석)

  • Eun-Seon Lee;Jong-Hui Kim;Bu-Min Kim;Mi-Hwa Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2024
  • This study investigated the effectiveness of using pathogens and aqueous acids to reduce the Aspergillus ochraceus and Rhodotorula mucilaginosa contamination in livestock production environments. For this study, 1 mL of each bacterial suspension (107-108 spores/mL) was inoculated on a knife surface, dried at 37℃, and used under each treatment condition. First, to investigate the effect of organic acids, acetic, lactic, and citric acids were used. Subsequently, to select the appropriate concentration, they were prepared at concentrations of 0.5, 1, 2, 3, 4, and 5%, respectively. Accordingly, to further maximize the effect of organic acid treatment, we combined the treatment with ultraviolet light. The two strains showed a significant difference (P<0.05) compared to the initial strain, with a greater than 90% decrease in the concentrations of all organic acids. Consequently, acetic and lactic acids decreased by approximately 5 and 2 log colony forming unit (CFU)/cm2, respectively, when treated with ultraviolet light (360 mJ/cm2); however, citric acid decreased by less than 1 log CFU/cm2. However, when manufactured with 4% acetic acid, a severe malodor was emitted, making it difficult for workers to use it in a production environment. Accordingly, the optimal treatment conditions for organic acid and ultraviolet light for application were selected as follows: immersion in a 4% lactic acid solution for 1 minute and then, sterilization with ultraviolet light at 360 mJ/cm2. Finally, when a pork meat sample was cut with a knife that was finally washed with lactic acid and treated with ultraviolet light, the low level of inoculum transferred from the cleaned knife to the surface of the sample was not detected. In conclusion, using this established method can prevent cross-contamination of the surface of the meat during processing.

Physicochemical and textural properties of thawed pork by vacuum tumbling (진공 텀블링을 이용한 해동 돈육의 이화학적 및 조직학적 특성)

  • Su-Jin Park;Won-Ho Hong;Seung-Min Oh;Chang-Hee Cho;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.423-432
    • /
    • 2024
  • In this study, a vacuum tumbler with 4 impellers (DVT) was designed and applied for thawing frozen pork (vacuum -60 kPa, jacket 35℃, 1 rpm). Quality characteristics of the thawed pork were compared with those of industrially thawed meat by natural air at room temperature (NAT) and imported vacuum tumbler (IVT). The thawing time for frozen pork (303.36 kg) using DVT (165 min) was much shorter than that of NAT (4,200 min). DVT-thawed pork had lower drip loss (0.85%) than NAT (2.08%). DVT-thawed pork showed a pH of 5.92, a total bacterial count of 1.96±0.02 log CFU/g and no coliforms. Deteriorations in fat (TBARS 0.31±0.01 MDA mg/kg) and protein (VBN 5.67±1.98 mg%) in DVT-thawed pork were significantly lower than those of NAT (p<0.05). DVT-thawed pork had a high water-holding capacity (WHC, 97.5%). The hardness (34.59±0.46 N) and chewiness (188.21±0.17) of cooked DVT-thawed pork were about 5-6 times lower than those of NTA. Microstructure (SEM) showed myofibrillar damage in NAT-thawed pork, whereas dense myofibrillar structure was observed in DVT-thawed pork. DVT was better or similar to IVT in all evaluation parameters. The designed DVT is expected to be used as an efficient thawing method in terms of processing time and yield and to produce thawed meat with high WHC, soft texture, and low spoilage by minimizing tissue damage.