• Title/Summary/Keyword: Processing Equipment

Search Result 1,222, Processing Time 0.029 seconds

3D Ground Terrain Processing Platform for Automated Excavation System

  • Kim, Seok;Kim, Tae-yeong;Park, Jae-Woo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.669-670
    • /
    • 2015
  • Efficient management of the construction heavy equipment is required to reduce the rate of carbon emissions and on-site accidents. The intelligent excavation system (IES) will improve the construction quality and productivity through information technologies and efficient equipment operation, especially in large earthwork projects. Three-dimensional digitized ground data should be required for identifying the path of heavy equipment and work-site environment. Rapid development of terrain laser scanners (TLS) is more readily to acquire the digital data. This study suggests the '3D ground terrain processing platform (3DGTPP)' including data manipulating module and analyzing module of the scanned data for intelligent earthmoving equipment operation. The processing platform consists of six modules, including scanning, registering, manipulating, analyzing, transmitting, and storing. 3D ground terrain processing platform presented in this study will provide fundamental information for intelligent excavation system (IES), which will increase the efficiency of earthworks and safety of workers in significant.

  • PDF

Challenges for large area processing equipment for TFT-LCD manufacturing

  • Tanaka, Tak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.85-86
    • /
    • 2007
  • As the manufacturing capacity needs for large size LCD TV shifts very fast into next generation, equipment manufactures face more challenges in development of the systems which can accommodate productivity, reliability and high process quality requirements from the panel makers. AKT committed to continue its contribution to the growth of the LCD market by providing excellent PECVD products. The cost containment and performance improvement are key challenges for large size processing equipment development and this presentation discusses various challenges and AKT's solutions in developing large size PECVD equipment beyond Gen. 8.

  • PDF

Development of automatic yield-test equipment for the Micromirror Array (Micromirror Array의 Yield 측정을 위한 방법 개발)

  • Cho, Kwang-Woo;Kim, Ho-Seong;Shin, Hyung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2547-2549
    • /
    • 1998
  • Automatic yield-test equipment for micro mirror array using image processing was developed. This computerized test equipment can classify the error states of the micromirrors. The test results are displayed on the monitor as a map which shows the error states and position. It is possible to measure yield and reliability with this test equipment for micromirror array using image processing.

  • PDF

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

A Study on Heat Transfer Characteristics of Impinging Jet Using Infared Thermal Image Processing System (적외선열화상처리장치를 이용한 충돌제트의 전열특성에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.711-716
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in electronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are nozzle exit angle $(30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ})$ and distance between nozzle and heat source is fixed 6d("d" is diameter of circular nozzle(10 mm). Reynolds number is 4500.

  • PDF

A Study on the Fault Process and Equipment Analysis of Plastic Ball Grid Array Manufacturing Using Data-Mining Techniques

  • Sim, Hyun Sik
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1271-1280
    • /
    • 2020
  • The yield and quality of a micromanufacturing process are important management factors. In real-world situations, it is difficult to achieve a high yield from a manufacturing process because the products are produced through multiple nanoscale manufacturing processes. Therefore, it is necessary to identify the processes and equipment that lead to low yields. This paper proposes an analytical method to identify the processes and equipment that cause a defect in the plastic ball grid array (PBGA) during the manufacturing process using logistic regression and stepwise variable selection. The proposed method was tested with the lot trace records of a real work site. The records included the sequence of equipment that the lot had passed through and the number of faults of each type in the lot. We demonstrated that the test results reflect the real situation in a PBGA manufacturing process, and the major equipment parameters were then controlled to confirm the improvement in yield; the yield improved by approximately 20%.

Design of Remote Management System for Smart Factory

  • Hwang, Heejoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2020
  • As a decrease in labor became a serious issue in the manufacturing industry, smart factory technology, which combines IT and the manufacturing business, began to attract attention as a solution. In this study, we have designed and implemented a real-time remote management system for smart factories, which is connected to an IoT sensor and gateway, for plastic manufacturing plants. By implementing the REST API in which an IoT sensor and smart gateway can communicate, the system enabled the data measured from the IoT sensor and equipment status data to the real-time monitoring system through the gateway. Also, a web-based management dashboard enabled remote monitoring and control of the equipment and raw material processing status. A comparative analysis experiment was conducted on the suggested system for the difference in processing speed based on equipment and measurement data number change. The experiment confirmed that saving equipment measurement data using cache mechanisim offered faster processing speed. Through the result our works can provide the basic framework to factory which need implement remote management system.

Online Monitoring of Ship Block Construction Equipment Based on the Internet of Things and Public Cloud: Take the Intelligent Tire Frame as an Example

  • Cai, Qiuyan;Jing, Xuwen;Chen, Yu;Liu, Jinfeng;Kang, Chao;Li, Bingqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3970-3990
    • /
    • 2021
  • In view of the problems of insufficient data collection and processing capability of multi-source heterogeneous equipment, and low visibility of equipment status at the ship block construction site. A data collection method for ship block construction equipment based on wireless sensor network (WSN) technology and a data processing method based on edge computing were proposed. Based on the Browser/Server (B/S) architecture and the OneNET platform, an online monitoring system for ship block construction equipment was designed and developed, which realized the visual online monitoring and management of the ship block construction equipment status. Not only that, the feasibility and reliability of the monitoring system were verified by using the intelligent tire frame system as the application object. The research of this project can lay the foundation for the ship block construction equipment management and the ship block intelligent construction, and ultimately improve the quality and efficiency of ship block construction.