• 제목/요약/키워드: Processing Accuracy

검색결과 3,690건 처리시간 0.032초

고정밀 CMOS sample-and-hold 증폭기 설계 기법 및 성능 비교 (The design of high-accuracy CMOS sampel-and-hold amplifiers)

  • 최희철;장동영;이성훈;이승훈
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.239-247
    • /
    • 1996
  • The accuracy of sample-and-hold amplifiers (SHA's) empolying a CMOS process in limited by nonideal factors such as linearity errors of an op amp and feedthrough errors of switches. In this work, after some linearity improvement techniques for an op amp are discussed, three different SHA's for video signal processing are designed, simulated, and compared. The CMOS SHA design techniques with a 12-bit level accuracy are proposed by minimizing cirucit errors based on the simulated results.

  • PDF

GPS의 시각 응용에 따른 정밀도 개선에 관한 연구 (A Study on the Accuracy Improvement Technique Using GPS Clock)

  • 채규훈;사카모토 켄야
    • 동력기계공학회지
    • /
    • 제14권1호
    • /
    • pp.5-10
    • /
    • 2010
  • Both the accuracy and stability of the clock get from the GPS receiver are considered in the range of pps. And we verified the system clock stability of a micro-controller system using the pps pulse supplied by the GPS receiver. In complex system of digital processing, the rack of precise timing signal may cause the serious problem or breakdown accident. To get rid of these undesirable problems, we introduced VCXO circuit to a micro-controller system to preserve high accurate clock stability.

GPS L1/갈릴레오 E1 복합신호처리를 통한 위치정확도 향상 연구 (A Study on Enhanced Accuracy using GPS L1 and Galileo E1 Signal Combined Processing)

  • 신천식;이상욱;윤동원
    • 한국위성정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.68-74
    • /
    • 2011
  • 본 논문은 GPS L1신호와 갈릴레오 E1 신호를 복합 신호처리를 통한 위치정확도 성능향상 연구결과를 제시하였다. GNSS 수신기에서의 신호획득 및 추적과정의 성능 향상시키기 위해 복수개의 누적기, 판별기 및 루프 필터 모듈을 적용하였고, 소프트웨어 측정 결과와 하드웨어 측정결과를 성능 비교하였다, 또한 추적과정에 대한 성능비교는 정확도와 민감도 측면에서만 다루었으며 갈릴레오 E1 신호처리를 위한 DLL(Delay Lock Loop) 판별기는 power early late 타입을 적용하여 성능을 검증하였다.

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.

소셜 네트워크 분석 및 정규화된 할인 누적 이익을 이용한 영화 추천 시스템 (Movie Recommendation System using Social Network Analysis and Normalized Discounted Cumulative Gain)

  • 비라콘 폰싸이;신장 캄파폰;이한나;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.267-269
    • /
    • 2019
  • There are many recommendation systems offer an effort to get better preciseness the information to the users. In order to further improve more accuracy, the social network analysis method which is used to analyze data to community detection in social networks was introduced in the recommendation system and the result shows this method is improving more accuracy. In this paper, we propose a movie recommendation system using social network analysis and normalized discounted cumulative gain with the best accuracy. To estimate the performance, the collaborative filtering using the k nearest neighbor method, the social network analysis with collaborative filtering method and the proposed method are used to evaluate the MovieLens data. The performance outputs show that the proposed method get better the accuracy of the movie recommendation system than any other methods used in this experiment.

비디오 모니터링 환경에서 정확한 돼지 탐지 (Accurate Pig Detection for Video Monitoring Environment)

  • 안한세;손승욱;유승현;서유일;손준형;이세준;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.

농림수산식품분야 정보처리를 위한 적응하는 분기히스토리 길이를 갖는 분기예측 메커니즘 (A Branch Prediction Mechanism With Adaptive Branch History Length for FAFF Information Processing)

  • 고광현;조영일
    • 현장농수산연구지
    • /
    • 제13권1호
    • /
    • pp.3-17
    • /
    • 2011
  • Pipelines of processor have been growing deeper and issue widths wider over the years. If this trend continues, branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modem processors for FAFF(Food, Agriculture, Forestry, Fisheries)Information Processing. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch PC. Banks 1,2,3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13, up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.