• Title/Summary/Keyword: Process-parameter

Search Result 3,085, Processing Time 0.036 seconds

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest (산림 사면에서 실측 토양수분을 이용한 토양증발평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.557-568
    • /
    • 2012
  • In order to understand the hydrological processes on the mountainous forest, the configuration of soil evaporation (E) out of evapotranspiration (ET) is a challenging and important topic. In this study, we attempted to understand the soil evaporation process for a humid forest hillslope via measuring and analyzing soil moistures with a sampling interval in 2 hours at three locations for 10 days between May 22th and 31th 2009. Two methods were used to estimate soil evaporation in every 2hr; one is a method using soil moisture measurement ($E_{SM}$), the others methods are based on Penman equation (Penman (1948), Staple (1974), Konukcu (2007), Equilibrium Penman ($E_{equili}$)). As a critical parameter in determining $E_{SM}$, the dry surface layer (DSL), was estimated using energy balance equation. The accumulated soil evaporation ($E_{SM}$) of A, B, C points were estimated as 2.09, 1.08 and 2.88 mm, respectively. The estimated evaporation of Penman (1948), Staple (1974), Konukcu (2007), $E_{equili}$ were 4.91, 8.80, 8.63 and 3.28 mm. The proposed method with soil moisture measurement showed lower soil evaporations than the other conventional methods. The increasing soil temperature and interaction between soil and atmosphere due to existence of litter and DSL are considered as dominant factors for soil evaporation. The $E_{SM}$ has the apparent lag time between 2 and 4 hr compared with $E_{equili}$ and net radiation. The DSL and surface resistance ($r_s$) were increased as soil moisture was decreased for in this study. The estimated DSL through the temporal distribution analysis of soil moisture and tension measurements was also similar to that of the energy balance relationship.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Theoretical and Empirical Issues in Conducting an Economic Analysis of Damage in Price-Fixing Litigation: Application to a Transportation Fuel Market (담합관련 손해배상 소송의 경제분석에서 고려해야 할 이론 및 실증적 쟁점: 수송용 연료시장에의 적용)

  • Moon, Choon-Geol
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.187-224
    • /
    • 2014
  • We present key issues to consider in estimating damages from price-fixing cases and then apply the procedure addressing those issues to a transportation fuel market. Among the five methods of overcharge calculation, the regression analysis incorporating the yardstick method is the best. If the price equation relates the domestic price to the foreign price and the exchange rate as in the transportation fuel market, the functional form satisfying both logical consistency and modeling flexibility is the log-log functional form. If the data under analysis is of time series in nature, then the ARDL model should be the base model for each market and the regression analysis incorporating the yardstick method combines these ARDL equations to account for inter-market correlation and arrange constant terms and collusion-period dummies across component equations appropriately so as to identify the overcharge parameter. We propose a two-step test for the benchmarked market: (a) conduct market-by-market Spearman or Kendall test for randomness of the individual market price series first and (b) then conduct across-market Friedman test for homogeneity of the market price series. Statistical significance is the minimal requirement to establish the alleged proposition in the world of uncertainty. Between the sensitivity analysis and the model selection process for the best fitting model, the latter is far more important in the economic analysis of damage in price-fixing litigation. We applied our framework to a transportation fuel market and could not reject the null hypothesis of no overcharge.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Simulation on the shape of tuna longline gear (다랑어 연승어구의 형상에 관한 시뮬레이션)

  • 이지훈;이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.305-317
    • /
    • 2003
  • Underwater shape and hook depth in tuna longline gear are important factors to decide fishing performance. It also should be considered that management and analysis of hooked rate data from hooked fish species and sizes, and each fishing would be used as a reference data in the future fishing. In this research, after analyzing underwater shape of tuna longline gear by current direction and speed using simulation, experiments were executed in flume tank to verify accuracy of the analysis. Also using the depth of each hook from the simulation, a database system was setup to process the data of bait and hooked fish species. The results were as follows;1. When the attack angle and the shortening rate are fixed, a decrease of the hook depth is proportion to an increase of current speed. 2. When the shortening rate and current speed are fixed, a decrease of hook depth is proportion to an increase of attack angle. 3. When the attack angle and velocity of flow are fixed, a decrease of hook depth is proportion to an increase of shortening rate 4. As a result of comparison between the underwater shape by simulation and that by model gear, the result of the simulation was very close to that of model gear within $$ {\pm}3%$$ 3% error range. 5. In this research, hooked rate database system using hook depth of simulation can analyze the species and size of fish by the parameter; bait. hook depth, so It could be helpful to manage and analyze the hooked data on the field.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.