• Title/Summary/Keyword: Process window of PECVD

Search Result 5, Processing Time 0.019 seconds

Use of a Rapid Thermal Process Technique to study on the crystallization of amorphous Si films fabricated by PECVD (PECVD 방법으로 제조된 비정질 Si 박막의 RTP를 이용한 결정화 연구)

  • Sim, C.H.;Kim, H.N.;Kim, S.J.;Kim, J.W.;Kwon, J.Y.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2052-2054
    • /
    • 2005
  • TFT-LCD requires to use poly silicon for High resolution and High integration. Thin film make of Poly silicon on the excimer laser-induced crystallization of PECVD(plasma-enhanced chemical vapor deposition)-grown amorphous silicon. In the thin film hydrogen affects to a device performance from bad elements like eruption, void and etc. So dehydrogenation prior to laser exposure was necessary. In this study, use RTP(Rapid Thermal Process) at various temperature from $670^{\circ}C$ to $750^{\circ}C$ and fabricate poly-silicon. it propose optimized RTP window to compare grain size to use poly silicon's SEM pictures and crystallization to analyze Raman curved lines.

  • PDF

Characteristics of Amorphous Si Films Fabricated by Mesh-type PECVD and Their Crystallization Behavior Using Excimer Laser (Mesh-type PECVD 방법으로 제조된 비정질 Si박막의 특성 및 레이저 결정화)

  • Han Sang-Yong;Choi Jae-Sik;Kim Yong-Su;Park Sung-Gye;Ro Jae-Sang;Kim Hyoung-June
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • It is increasingly necessary to use poly-Si n's as high resolution and integration of Tn for LCD. Excimer Laser Crystallization (ELC) of a-Si is mainly used as a low temperature process. But the ELC method for the fabrication of poly-Si has the eruption problems associated with hydrogen in the a-Si film. So we need a dehydro-genation process additionally. Hydrogen in a-Si film can degrade the quality of poly-Si film and electrical properties of device due to the hydrogen eruption and voids which occur during the excimer laser annealing. In this study, we propose mesh-type PECVD as the a-Si film deposition method for achieving the low concentration hydrogen. Mesh-type PECVD was found to reduce the hydrogen content substantially. We could obtain a as-deposited a-Si film with hydrogen contents less than $1\%$ at $300^{\circ}C$. We also investigated the behavior by XeCl excimer laser annealing of a-Si fabricated by mesh-type PECVB. As a result, we were able to confirm the broad process window in contrast to the narrow process range typically obtained in ELC. Hydrogen eruption was not observed in poly-Si films after ELC These results suggests that mesh-type PECVD is a viable method to achieve the low hydrogen content a-Si and improve the process windows for ELC.

High-rate, Low-temperature Deposition of Multifunctional Nano-crystalline Silicon Nitride Films

  • Hwang, Jae-Dam;Lee, Kyoung-Min;Keum, Ki-Su;Lee, Youn-Jin;Hong, Wan-Shick
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.109-112
    • /
    • 2010
  • The solid phase compositions and dielectric properties of silicon nitride ($SiN_x$) films prepared using the plasma enhanced chemical vapor deposition (PECVD) technique at a low temperature ($200^{\circ}C$) were studied. Controlling the source gas mixing ratio, R = $[N_2]/[SiH_4]$, and the plasma power successfully produced both silicon-rich and nitrogen-rich compositions in the final films. The composition parameter, X, varied from 0.83 to 1.62. Depending on the film composition, the dielectric properties of the $SiN_x$ films also varied substantially. Silicon-rich silicon nitride (SRSN) films were obtained at a low plasma power and a low R. The photoluminescence (PL) spectra of these films revealed the existence of nano-sized silicon particles even in the absence of a post-annealing process. Nitrogen-rich silicon nitride (NRSN) films were obtained at a high plasma power and a high R. These films showed a fairly high dielectric constant ($\kappa$ = 7.1) and a suppressed hysteresis window in their capacitance-voltage (C-V) characteristics.

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

Deposition Characteristics of Lead Titanate Films on $RuO_2$ and Pt Substrates Fabricated by Chemical Vapor Deposition ($RuO_2$ 및 Pt 기판에서 $PbTiO_3$박막의 화학기상 증착특성에 관한 연구)

  • Jeong, Su-Ok;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.282-289
    • /
    • 2000
  • $PbTiO_3$ films were fabricated by electron cyclotron resonance plasma enhanced chemical vapor deposition(ECR-PECVD). Deposition characteristics of $PbTiO_3$films on $RuO_2$ and Pt substrates were investigated with varying the flow rate of metalorganic source and substrate temperature. The residence time of Pb-oxide molecules in much longer on $RuO_2$ than on Pt substrate, while the perovskite nucleation is more difficult on $RuO_2$ than on Pt substrate. Therefore, the process conditions to obtain the single perovskite $PbTiO_3$ phase are more restricted on $RuO_2$ than on Pt substrates. An introduction of Ti-oxide seed layer increases perovskite nucleation density and thus enlarges the process window to obtain the single perovkite phase. The introduction of Ti-oxide seed layer make the PZT film that Ti-components of $PbTiO_3$ are partially substituted with Zr atoms have single perovskite phase for the wide range of Zr/(Zr+Ti) concentration ratios.

  • PDF