• Title/Summary/Keyword: Process technology

Search Result 33,890, Processing Time 0.049 seconds

Double Side SMT and Molding Process Development for mPossum Package

  • Kim, ByongJin;Cho, EunNaRa;Kim, ChoongHoe;Lee, YoungWoo;Lee, JaeUng;Ryu, DongSu;Jung, GyuIck;Kang, DaeByoung;Khim, JinYoung;Yoon, JuHoon;Kim, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2016
  • 3-Dimensional System in Package (3-D SiP) structure (Amkor calls it mPossum-molded Possum) using double side Surface Mount Technology (SMT) and double side molding was evaluated in order to achieve small/thin form factor as well as good functionality by integration and double side layout. As the new platform on laminate substrate basis, molding process was challenge in mold flow balance at top and bottom side and package warpage control over the overall assembly process. There were two types of different molding process evaluated with 1) 1-step molding which was done at both side at the same time and 2) 2-step molding which was done at the conventional molding process twice. Mold simulation helped to narrow down the material selections and parameters available before actual sample build. There were many challenges for this first trial in design/ parameter and material types but optimized them to enable this structure.

Study on the Machining Characteristics of Cutting Inserts (밀링용 인서트의 가공특성에 관한 연구)

  • Cho, Jun-Hyun;Hwang, In-Hwan;Park, Sang-Hyun;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.76-80
    • /
    • 2013
  • This paper reports some experimental results on the machining performance of ground & non-ground milling inserts. Five kinds of milling inserts were manufactured without grinding process and one milling insert was manufactured with grinding process. Machining experiments were carried out to compare the performance of ground & non-ground inserts. This experimental result indicate that tool wear, cutting force and surface roughness of the each tool. From the result five milling inserts that have non-grinding process and one milling insret that have grinding process compared appear.

A Study on Products Localization Process of Weapon Systems R&D based on Systems Engineering (시스템공학 기반의 무기체계 부품국산화 연구개발 프로세스 연구)

  • Na, Jae Hyun;Lee, Joo Wook;Kim, Si Ok;Roh, Don Suk
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.78-83
    • /
    • 2020
  • Recently, the use of domestic products securing domestic technology is encouraged, because of export restrictions of the countries or DMSMS(diminishing manufacturing sources and shortages). Domestic weapon systems are actively focused on the parts localization process of R&D projects based on Systems Engineering. However, it is the only way to do technical review for Systems Engineering process up to now. There is a case of application in Localization with Systems Engineering process, but the SE activity is not enough. This study is how to apply Systems Engineering process to Localization effectively based on real cases.

Effects of Surfactant and Preplate Process on Electroless Copper Plating on Carbon Nano-fiber (탄소나노섬유 표면 구리 무전해 도금에 미치는 분산제와 도금 전처리의 영향)

  • Han, Jun-Hyun;Seok, Hyun-Kwang;Lee, Sang-Soo;Jee, Kwang-Koo
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This paper deals with the effects of the surfactant and preplate process (sensitization and activation) on electroless copper plating on carbon nano-fiber (CNF). Ultrasonic irradiation was applied both during dispersion of CNF and during electroless plating containing preplate process. The dispersion of CNF and flatness of the plated copper film were discussed based on the changes in surfactant concentration and preplate process time. It was clearly shown that high concentration of surfactant and long time of preplate process could promote the agglomeration of CNF and uneven copper plating on CNF.

A Study on Large Surface TPS Reinforced Cover Glass Grinding Process Development (대면적 TPS 강화 Cover Glass Grinding 공정 개발에 관한 연구)

  • Lee, Taeho;Song, Jaichul;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2015
  • In this paper, we develops a domestic and foreign first reinforced cover glass grinding process for large surface TPS and resolves a problem of conventional cover glass grinding process through a research. Also, it is developed in priority to improve a productivity and processing quality emphasis. The development process develops a total process technology through a production and operation of demonstration unit. so, in this paper, we secured cover glass grinding process technology, image processing technology, mechanisms and control algorithms.

Process Design for Deep Drawing of High Precision Rectangular Battery Case used in Cellular Phone (휴대폰용 초정밀 사각 밧데리 케이스의 ???K드로잉 공정설계)

  • Kim H. J.;Ku T. W.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.97-100
    • /
    • 2000
  • Today deep drawing and ironing are the major process in manufacturing of battery case used in cellular phone from aluminum. The same technology is utilized in manufacturing of steel or aluminum cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations for High Precision Rectangular Battery Case. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

A Study on the Manufacturing Technology of a Folding Blind Rivet (폴딩 블라인드 리벳의 제조기술에 관한 연구)

  • Byun, Hong-Seok;Kim, Young-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, the manufacturing technology of a folding blind rivet was developed through finite element analysis(FEA). Numerical simulations of the folding blind rivet used to join two components have been performed with the finite element method for the forging process design. To minimize the process and manufacture the folding blind rivet without defects, a variety of design rules were proposed. From the results of FEA applied process design rules, an optimal six-stage process was proposed. The finite element simulation results such as shape of the forged rivet, strain distribution and forging load were investigated for the usefulness of the forging process of the blind rivet. In addition, the experiments have been implemented and their results were compared to the analytic results.

FEM Analysis for Optimization of Hot Forging Process of Piston Crown (피스톤크라운의 열간단조공정 최적화를 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.O.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.98-101
    • /
    • 2009
  • Piston crown to the hot forge a unified nature of the product has a shape with multi-level step forging process, so if you are not a mechanical process that can be a significant loss is material. Therefore, minor in terms of material technology; continue to improve the collection rate should be. The Piston crown and the manufacturing of products such as marine diesel engines, reducing costs and to improve mechanical properties of the method are being forged. Piston crown molding hot forging process the large volume forging products handling because of the size of the size of the hard plastic material flow process for improving the design and actual field experience through advanced plastic technology, and it is important to interpret the results and for many experimental plastic The accumulation of results is very important.

  • PDF