• Title/Summary/Keyword: Process of dye wastewater treatment

Search Result 62, Processing Time 0.026 seconds

A Study on the Dye Wastewater Treatment by Advanced Oxidation Process (고급산화공정을 이용한 염료폐수의 처리기술 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Park, Sei Joon;Kang, Min Gu;Kim, Jong Sung;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Organic Removal Efficiency and Toxicity Evaluation of Persistent Microorganism from Dye Wastewater Treatment using a Photooxidation system (광산화시스템을 이용한 염색폐수의 유기물 처리효율 및 잔류미생물의 독성 평가)

  • Jung, Ho Jun;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.83-88
    • /
    • 2009
  • The removal efficiency of organic compounds and the toxicity evaluation of microorganism have been studied in dye wastewater treatment using $UV/TiO_2$ and $UV/H_2O_2$ photooxidation system. Sample waters tested in this work were raw dye wastewater and dye wastewater treated in $UV/TiO_2$ and $UV/H_2O_2$ photooxidation system respectively. Total organic carbon(TOC) removal rate was 50% in $UV/TiO_2$ process and 80% in $UV/H_2O_2$ process. It has been investigated with colony counting agar method and paper disk method whether the type of treatment process has affected the microorganism growth. In the raw wastewater, more than four types of microorganisms have survived. But, little of microorganisms were alive at TOC removal rate of 50% in $UV/TiO_2$ system. In contrast to that, two types of microorganisms were found at TOC removal rate of 80% in $UV/H_2O_2$ system.

  • PDF

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

Composition of Cotton Textile Dyeing Process Wastewater and its Treatment Characteristics by Ionized Gas (면섬유염색폐수의 공정별 폐수성상과 이온화가스에 의한 처리특성)

  • Lim, Gyeong-Eun;Chung, Paul-gene;Kwon, Ji-Young;Lee, Eun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.303-308
    • /
    • 2007
  • Three types dyeing wastewater (dark, medium, light color) discharged from cotton textile dyeing with reactive dye was collected at each step of process. Each process dying wastewater was analyzed and treated by ionized gas. The analysis focused on $COD_{Cr}$, SS and color. Bleaching & scouring process wastewater has the highest $COD_{Cr}$ value in the three type dyeing wastewater. SS shows the highest value at dyeing process wastewater in dark and medium color but light color has at finishing process wastewater. The result of process wastewater treatment by ionized gas was that the ionized gas was effective in $COD_{Cr}$ removing of bleaching & scouring process and finishing process wastewater but was not good at dyeing process wastewater. From that result it is estimated that the ionized gas could not work in opening the aromatic ring and react only in aliphatic component of the molecule. Because the surfactants contained in bleaching & scouring process and finishing process wastewater have only one aromatic ring in its molecular structure, in contrast with the reactive dye compounds consist of aromatic rings great part of its molecular structure. The color almost removed in 1.5 hrs reaction time but $COD_{Cr}$ removal effiency was only 30.7% through 3hrs in 1500 mL of total dyeing wastewater treated by 10 L/min ionized gas.

Estimation of Greenhouse Gas Emissions and Environmental Assessment of Dye Wastewater Treatment Process (염색폐수 처리공정의 온실가스 배출량 산정 및 환경성 평가)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1881-1888
    • /
    • 2014
  • Greenhouse gas (GHG) emissions from dye wastewater treatment processes were estimated by analysing their mass and energy balances, which were then used as baseline information for environmental assessment. The total GHG emissions from dye wastewater treatment plants were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The amounts of $CO_2$, $CH_4$ and $N_2O$ emissions were calculated according to the Intergovernmental Panel on Clime Change (IPCC) guideline for the GHG target management system. For 3 years between 2011 and 2013, direct and indirect emissions were on average 8,742.7 and 7,892.0 Ton.$CO_2eq/year$, respectively, with the former exhibiting 52.6 %. Also, compared to 2012, in 2013, the eco-efficiency indicator by the GHG emissions was found to be more than 1, suggesting that environmental quality was effectively improved.

Study on the electrochemical treatment of dye wastewater (염색폐수의 전해처리 방법에 관한 연구)

  • 전종남;김형수;윤용수;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 1996
  • This study was performed to measure and evaluate the characteristics of removal efficiency and kinetics in the electrolytic decolorizing process of dye wastewater containing acid dye Red 114 by using Fe anode. The synthetic wastewater samples of 500, 1000, $2000mg/{\ell}$ concentration were tested and as an attempt to assess the feasibility of the present system for the industrial application, a sample of wastewater collected by J textile factory in Eujungbu city was also treated. It was found that the optimum conditions were pH 7, 8Volt and removal efficiency in synthetic wastewater containing $2000mg/{\ell}$ of dye and 0.2% of electrolyte (NaCl) was 99.68% after 20minutes of reaction time. In this condition, overall rate constant was $4.77{\times}10^{-5}mmol/cm^{3}hr$. The Decolorizing efficiency and COD removal efficiency of J textile factory wastewater were 99% and 86% respectively at pH 7, 8Volt for 40minutes of reaction time.

  • PDF

Study on the Membrane Cleaning-in-place (CIP) Conditions for the Dye Wastewater Treatment Process Using Polyamide Composite Membranes (폴리아마이드계 복합막을 이용한 염료 폐수 처리 공정 분리막 세척 조건 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Hwang, Jeong-Eun;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • For the treatment of the dye wastewater, a polyamide nano-composite membrane and reverse osmosis (RO) membranes were prepared using interfacial polymerization technique, in which piperazine, meta-phenylene diamine, and trimesoyl chloride were used as monomers, Their permselective properties were characterized with aqueous solutions of PEG 600, $Na_2SO_4$, and NaCl, and their performance was compared with that of Osmonics Co, They were found to be a typical nano-composite membrane and a low pressure RO membrane. Using them, a real dye wastewater supplied from the Kyungin Corporation, one of the domestic dye producer, was treated, studying the separation performances of the membranes, Also, during the wastewater treatment, cleaning in place (CIP) of the membranes was carried out regularly to recover the flux of the membranes. Three different chemical cleaners were employed for the CIP process and their performance were compared in this study.

Application of surface modified sericite to remove anionic dye from an aqueous solution

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • The treatment of dyeing wastewater is not easy because dyes are mainly aromatic, heterocyclic compounds. The most effective technologies and methods to treat dyeing wastewater are costly and involve materials that are difficult to regenerate after use. Therefore, it is necessary to develop cost-effective, eco-friendly technologies to treat dyeing wastewater. The aim of this study was to investigate the removal of sulfur blue 11 (CI 53235) anionic dye using methyl esterified sericite (ME-sericite) adsorbents in an aqueous solution. The results are discussed in terms of the ME-sericite particle size, temperature, pH value and initial sorption rate according to the initial sulfur blue concentration. In addition, we analyzed the adsorption kinetics using a Pseudo-second-order model with the desorption and reusability. The methyl esterification caused a considerable increase in the specific surface area from 4.45 to $17.62m^2/g$. The ME-sericite adsorbents successfully removed > 98% of the sulfur dye in the aqueous solution. For the adsorption of 1 mg of sulfur dye, approximately 4.6 to 6.6 g/L ME-sericite were required. The desorption process was carried out by mixing a NaOH eluent to desorb 90.56% of the sulfur dye with 2 h of contact time. Thus, the ME-sericite is a promising adsorbent to treat dyeing wastewater due to its low dose requirement, high removal efficiency and inexpensive material.

A Study on the Dye Wastewater Treatment Using TiO2 Photocatalyst/Ozonation (광촉매/오존을 이용한 염색폐수처리에 관한 연구)

  • Kim, Chang-Kyun;Chung, Ho-Jin;Kim, Jong-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis and ozonation for the treatment of dye wastewater. The treatability of dye wastewater by $UV/TiO_2$ and $UV/TiO_2/O_3$ advanced oxidation process (AOP) was investigated under various conditions. The experiments were conducted in a batch reactor of 50 liters equipped with twelve UV Lamps of 16W. In $UV/TiO_2$ AOP, the removal efficiency of TCODMn and Color increased to 58% and 67% respectively with increasing UV intensity. Also, The removal efficiency of TCODMn and Color increased to 97% and 99% respectively with increasing $H_2O_2$. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and pH 5 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, TCODMn was removed faster than Color.