• Title/Summary/Keyword: Process of Form Generation

Search Result 293, Processing Time 0.023 seconds

The Form Generation Application System Establishment (형태발상 지원 시스템 구축에 관한 연구)

  • 김태호;홍정표;양종열;이건표;오기태
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.39-48
    • /
    • 2000
  • Under the ambiguous situation that design aim is not defined, this study would help designers with 1. overcoming the limitation of form generation ability by establishing visual application system, 2. accepting users'opinions by generating images dynamically, analysing and giving information on the preferred ones on the web on real time, 3. identifying tendency of preference so that they can generate preferred colors and images in future by updating image combination and dropping low-preferred ones. This system would play a role as an idea or form generation application in the product design development process.

  • PDF

Free-form Surface Generation from Measuring Points using Laser Scanner

  • Park, Jae-Won;Hur, Sugn-Min;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • With the development of a laser scanner of high precision and increased speed, reverse engineering becomes a key approach to reduce the time for the development of new products. But the modeling process is not so automated enough until now. Modeling in real workshops is usually performed by the experienced operators and it requires a skillful technique to get the resultant surface of high quality and precision. In this paper, a systematic solution is proposed to automate the free-form surface generation from the measured point data. Compatibility is imposed to the measured point data during input curve generation. And the compatibility of cross-sectional curve is also considered for the loft surface generation. The data in each step is produced in IGES file format to make an easy interface to other CAD/CAM software without any further data manipulation.

Generation of a 60-as Pulse Train from High Harmonic Generation (고차조화파를 이용한 60 아토초 펄스열 생성)

  • Go, Dong-Hyeok;Kim, Gyeong-Taek;Park, Ju-Yun;Nam, Chang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.361-362
    • /
    • 2009
  • High-order harmonics from gaseous atoms driven by an intense femtosecond laser pulse can form an attosecond pulse train. By selecting suitable harmonic generation conditions, the harmonic spectrum can be broad enough to form sub-hundred attoseconds. One serious limitation, however, comes from the inherent attosecond chirp originating from the harmonic generation process. We have proposed to compensate for the positive attosecond chirp by making use of negative group delay dispersion of a metallic x-ray filter or a gaseous medium. We generated 240-as pulses from neon and compressed them to 60 as after propagating through argon, close to the transform-limited duration of 47 as.

  • PDF

Generation of 106-as Pulse Train from High Harmonic Generation (고차조화파를 이용한 106 아토초 펄스열 생성)

  • Go, Dong-Hyeok;Kim, Gyeong-Taek;Park, Ju-Yun;Nam, Chang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.157-158
    • /
    • 2008
  • High-order harmonics from gaseous atoms driven by an intense femtosecond laser pulse can form an attosecond pulse train. By selecting suitable harmonic generation conditions, the harmonic spectrum can be broad enough to form sub-hundred attoseconds. One serious limitation, however, comes from the inherent attosecond chirp originating from the harmonic generation process. We have proposed to compensate for the positive attosecond chirp by making use of negative group delay dispersion of a metallic x-ray filter or a noble gas. We generated 241-as pulses from neon and compressed them to 106 as after propagating through argon, close to the transform-limited duration of 98 as.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Modeling of the Centerless Infeed (Plunge) Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1026-1035
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless infeed (plunge) grinding process is described. For a 3-D simulation model of form generation, contact points are assumed to be on least squares contact lines at the grinding wheel, regulating wheel, and work-rest blade. Using force and deflection analyses, the validity of this assumption is shown. Based on the 2-D simulation model developed in the previous work and the least squares contact line assumption, a 3-D model is presented. To validate this model, simulation results were compared with the experimental works. The experiments and computer simulations were carried out using three types of cylindrical workpiece shapes with varying flat length. The experimental results agree well with the simulation. It can be seen that the effect of flat end propagated to the opposite end through workpiece reorientation.

Test Generation for Speed-Independent Asynchronous Circuits with Undetectable Faults Identification

  • Eunjung Oh;Lee, Dong-Ik;Park, Ho-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.359-362
    • /
    • 2000
  • In this paper, we propose a test pattern generation algorithm on the basis of the identification of undetectable faults for Speed-Independent(SI) asynchronous control circuits. The proposed methodology generates tests from the specification of a target circuit, which describes the behavior of the circuit in the form of Signal Transition Graph (STG). The proposed identification method uses only topological information of a target circuit and reachability information of a fault-free circuit, which is generated in the form of Binary Decision Diagram(BDD) during pre-processing. Experimental results show that high fault coverage over single input stuck-at fault model is obtained for several synthesized SI circuits and the use of the identification process as a preprocessing decreases execution time of the proposed test generation with negligible costs.

  • PDF

Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process (엔드밀링 공정의 형상창성기구에 의하여 절삭면적이 측벽 진직도 특성에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1269-1278
    • /
    • 2013
  • The cutting area changes periodically in the end-milling process because of its form generation mechanism. In this study, the effects of the cutting area on end-milled side walls are studied by developing a cutting area model that simulates the area formed by engagement between a workpiece and a cutting edge of the end mill. To do this, the straightness profile of the side wall in the axial direction is investigated. Models for estimating the cutting area and the transition point, where the slope of the straightness profile changes suddenly, are verified from real end-milling experiments under various radial and axial depth of cut conditions. Through this study, it is confirmed that the final end-milled side wall is generated in the regions where cutting areas are constant and decreasing in the down-cut. Similarly, in stable up-cut, it is also generated in the regions where cutting areas are increasing and constant. It is found that the transition point appears when the region changes.

A Study on the Process of the Architectural Design Generation based on the 3D Voronoi Diagram (3차원 보로노이 다이어그램을 활용한 건축 디자인 생성 프로세스에 관한 연구)

  • Park, Jong-Gin;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.306-313
    • /
    • 2009
  • This paper presents the unique formation process of a volumetric space with the digital algorithm developed for Voronoi diagram in order to generate an effective parametric architectural form. By applying systematic parameters of architectural conditions within digital parametric tools, the interactions among sub-spaces developed by Voronoi diagram are enhanced by manipulating the spatial structures. In this paper, we discuss how the parametric distributing and zoning geometrical system can support designers in developing a free-formed space, and research on how this system creates a 3D volumetric space. With the in-depth research on the system and structure of Voronoi diagram, the approaches to the application of Voronoi diagram into architectural form generation are clarified to be an effective, creative and successful digital tool. The result of the application of the Voronoi diagram improves the design quality with systematic language in the sense that the sub-regions are created and controlled under the systematic and balanced hierarchy having dynamic relationships among each others with the restoration of the equilibrium of forces and tensions. This 3-dimensional Voronoi diagram provides another means for designers to solve architectural issues and to reinforce their design concepts.

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF