Proceedings of ITC-CSCC 2000, Pusan, Korea

Test Generation for Speed-Independent Asynchronous Circuits
with Undetectable Faults Identification

*Eunjung Oh, *Dong-lk Lee, and **Ho-Yong Choi

*Dept. of Info. & Comm., Kwang-Ju Institute of Science
& Technology, 1 Oryong-dong Buk-gu Kwang-Ju,
500-712, Korea
Tel: +82-62-970-2267, Fax: +82-62-970-2204
E-mail: {Eunjung, dilee}@csrl kjist.ac.kr

Abstract: In this paper, we propose a test pattern
generation algorithm on the basis of the identification of
undetectable faults for Speed-Independent(SI)
asynchronous control circuits. The proposed
methodology generates tests from the specification of a
target circuit, which describes the behavior of the circuit
in the form of Signal Transition Graph (STG). The
proposed identification method uses only topological
information of a target circuit and reachability
information of a fault-free circuit, which is generated in
the form of Binary Decision Diagram(BDD) during pre-
processing.

Experimental results show that high fault coverage
over single input stuck-at fault model is obtained for
several synthesized SI circuits and the use of the
identification process as a preprocessing decreases
execution time of the proposed test generation with
negligible costs.

1. Introduction

In general, testing of an asynchronous circuit is
considered harder than that of synchronous circuits due
to the following reasons.

¢ The absence of a global clock

* Redundant logic added to remove races and hazards
in logic synthesis

e Large state space due to the concurrency
characteristic

For the above reasons, direct adaptation of the well-
developed synchronous testing methodologies to the
asynchronous circuits cannot guarantee the validity and
the efficiency. Furthermore, an arbitrary modification of
a circuit might be hazardous in the asynchronous circuits
because of those modifications would cause unexpected
hazards and races.

There are two approaches to solve these
complicated problems in the testing of asynchronous
circuits. One is how to modify and adopt the

**School of Electrical & Electronics Eng., Chungbuk
National Univ., 48 Gaesin-dong Heungdeuk-gu
Cheong-Ju Chungbuk, 361-763, Korea
Tel: +82-431-261-3231, Fax:+82-431-274-9614
E-mail: hychoi@cbucc.chungbuk.ac kr

synchronous testing methodologies for the asynchronous
one[1-5]. The other is testability of an asynchronous
circuit[6]. Both approaches do not consider the
undetectable faults or the redundant faults of
asynchronous circuits. Test generation for those faults
turn out futile at last with huge amount of computation
and long execution time. Without the identification of
those faults in advance of the test generation, any testing
methodology cannot exhibit its merit thoroughly.

In this paper, we try to lessen those difficulties by
adopting followings.

1. Fundamental mode assumption[7]: We assume that
tests can be applied and the results are observable on
only stable states. Though normal operation of an SI
circuit does not follow the assumption, this is realistic
and reasonable in test generation and application
phases.

2. Undetectable fault identification: The identification
is performed prior to the test generation. The results
are passed to the test generator. The test genecrator
does not need to make any effort to find tests for the
identified undetectable faults.

3. Test generation from the specification: We follow
signal transition sequences described in a specification
of a circuit. The test generator takes a prefix of the
sequences as tests.

With the aboves, we have proposed an identification
of undetectable faults of asynchronous circuits and have
proposed a test generation method based on a
specification. In this paper, we only consider a specific
class of asynchronous circuits, an SI circuit with
ACGPDER signal network[8], which is depicted in Figure
1. The target fault model, single input stuck-at fault
model, is depicted in Figure 2-(a).

2. Identification of Undetectable Fault

A fault is undetectable when the fault does not affect the
behavior of a circuit under test, which is defined in the

— 359 —

specification. Undetectable faults reveal at the end of test
generation process after long execution time. Without the
identification of those faults in advance of the test
generation, a test generator gives useless effort to
discover those faults.

Our identification method finds undetectable faults
using both topological information and reachability
information of the given circuit, which is a byproduct of
test generation. In the identification process, all the
possible faults need not to be considered due to the
inherent characteristic of the ACGpER signal network.
Some of faults can be excluded by simple investigation
of net-list. The followings are categories of faults which
are excluded in the identification process.

1. All the output stuck-at faults: SI circuits has self-
checking property under the output-stuck at fault
model depicted in Figure 2-(b), that is a circuit halts in
the presence of any output stuck-at fault[6].

2. Input stuck-at faults equivalent to output stuck-at
faults: By the simple equivalent fault collapsing
analysis, input stuck-at faults equivalent to output
stuck-at faults can be identified. For example, stuck-
at-0(1) faults on an input of an AND(OR) gate is
equivalent to stuck-at-0(1) faults on the output of the
gate. :

3. Faults on wires branching out to primary outputs: A
fault on a wire branching out to a primary output is
always detectable because value of primary outputs
will change at least once.

‘4. Faults on input wires of C-elements: When an
output of a C-element changes at least once, a fault on
input wires of C-elements can be detected because the
output of the C-element does not change forever.

In consequence, only faults occurred on inputs of
set and reset regions, depicted in Figure 1, need to be
taken into accounts in the identification and we classify
these faults as potentially undetectable faults.

When a fault occurs in the ACGpER signal network,
an output variable affected by the fault is uniquely
determined due to the characteristic of signal network.
Assume that a stuck at-c¢ fault occurrs on wire x and the
function of the unique output variable is F. The function
for the fault-free(faulty) circuit Fy(F;) of F can be
derived by substituting ¢’(c) for x. The output of a C-
element is defined as ab+(a+b)c’, where a and b is inputs
of a C-element and ¢’ is the previous value of the C-
element. Since the output of the network is the output of
the C-element, the output function appears

Fg=F(x<c’)=A+BeF, and
Fr=F(x «c)=C+De F,,

where F), is previous value of F. A(B) and C(D) are
product(sum) of two input variable of the corresponding
C-element.

When F@®F, = 0, the fault is redundant. Otherwise,
the equation holds at least one of the following
conditions

Cl:A®@C=1andB=D=0
C2:F,=0andA® C=1
C3:F,=1and (A+B)® (C+D)=1

In case of Cl, the current state does not depend on
the previous state. C2 and C3 are dependent on the
previous state for the current state.

When a relevant variable assignment of variables
consisting of A, B, C, and D are achieved without
conflicts, the identification proceeds to check whether
the assignment appeared in the reachable state space of
specification. The reason for the reachability analysis is
that our proposed test generation considers only
reachable state space given by the specification. Thus,
the identification can be used for redundant fault
classification when the reachability analysis is omitted.
Figure 3 describes the whole procedure for the
identification.

3. A Testing Framework for Speed-
Independent Circuits

In the following, we introduce a testing methodology for
SI circuits.

1. SI circuit modeling: The proposed methodology
uses the same gate modeling as that of [1]. In circuit
modeling, only the specifications are taken into
account rather than actual circuits considered in [1].
That is, we regard the set of reachable states of a
circuit as that of the specification. Thus state
oscillations and critical races, which could occur on
states not defined in the specification, do not need to
be considered.

2. Specified sequence generation: Sequences are
obtained by traversing the given specification. Only
stable states in the sequence are used for test
generation, thus no test invalidation problems, which
stem from unstable states and unreachable states occur.
Figure 4 depicts an example of generation of the
specified sequence.

3. Undetectable fault identification: All undetectable
faults including redundant faults are identified by
Algorithm 1in Figure 3.

4. Test generation: The specified sequences are applied
sequentially to a fault-free circuit and a faulty circuit
until the outputs of both circuits become different. The
applied part of the sequences is the test for the fault.

Algorithm?2 in Figure 5 depicts the proposed testing
methodology.

— 360 —

4. Experimental Results

The proposed methodology has been implemented with
C language and CUDD 2.1.1 package[9]. Benchmarks
have been automatically synthesized by the well-known
asynchronous logic synthesizer, Petrify[10]. The
experiments have been performed on Sun Sparc Ultra-I.
Two kinds of experiments are performed over the same
set of benchmarks: (1) withouyt the undetectable fault
identification and (2) with the identification process.
Results are summarized in Table 1 and Table 2,
respectively.

Modeling time and ATPG time in Table 1 show the
CPU time used for fault-free circuit modeling and test
generation for all possible single input stuck-at faults. As
shown in Table 1, high fault coverage can be achieved
for most of examples without exploring the entire state
space of the circuit.

As mentioned previously, the state space of an
asynchronous circuit is quite different from that of a
synchronous circuit. For example, the upper bound of the
state space of “full” with two state holding elements is
22(atehy*2(input) gy cynchronous case and 2P *3etntemal) f
asynchronous case. This fact explains longer execution
time of our experiments as compare to that of
synchronous case for the same size of circuits.

Potential U fault and U fault in Table 2 are the
number of potentially undetectable faults and identified
undetectable faults, respectively. As shown in Table 2,
execution time of the identification is negligible in most
cases. The sixth column, Time Saving, in Table2 is
achieved at the cost of the fourth column, Identification
Time. Even though the benchmarks used in these
experiments are relatively small, we realize that the
portion of undetectable faults is not negligible in an
asynchronous circuit. As circuits become lager and more
complicated, this feature will be worsened. On those
circumstances, the undetectable fault identification
before the test generation exhibits its merits definitely.

5. Conclusions

We have proposed a testing methodology for Speed-
Independent circuits with an identification of
undetectable faults as a pre-processing. The proposed
testing methodology generates tests based on the
specification of a target circuit to exploit the normal
operation of the circuit. Target faults were detected by
the comparison of outputs of the fault-free and faulty
circuits. For the purpose of efficient comparison,
reachability information of both circuits is saved in the
form of BDD and operations are conducted by BDD
manipulations.

The proposed identification makes use of only
topological information of the target circuit and

reachability information of the fault-free circuit, which
was generated during preprocessing. Thus, it can reduce
the execution with negligible costs. Even though the
benchmarks used in the experiments were relatively
small, we showed the indispensability of the
identification for efficient test generation.

Since the proposed testing methodology assumed
that a specification for a target circuit was given, the set
of reachable states of the circuit was restricted as that of
the specification. When we consider the set of all the
possible reachable state of the circuit, the identification
of undetectable faults and testing methodologies might
be changed. Those studies are left as future works.

Acknowledgements

This work has been supported by the KAIST/K-JIST IT-
21 Initiative in BK21 of Ministry of Education.

References

[1] Oriol Roig i Mansilla, “Formal verification and
testing of asynchronous circuits,” PhD thesis,
Universitat Politecnica de Catalunya, 1997.

[2] Marco A. P&na, Enric Pastor, and Jordi Cortadella,
“Symbolic techniques for the automatic test pattern
generation for Speed-Independent circuits,”
Technical Report RR-97-04, UPC/DAC, 1997.

[3] Oleg Alexandrovich Petlin, “Design for testability of
asynchronous VLSI circuits,” PhD thesis, Univ. of
Manchester, 1996.

[4] Savita Banerjee, Srimat T. Chakradhar, and Rabindra
K. Roy, “Synchronous test generation model for
asynchronous circuits,” In the 9th International
Conference on VLSI Design, 1996.

{5} Ming-Der Shieh, “Design and synthesis of testable
asynchronous sequential logic circuits,” PhD thesis,
Michigan State Univ., 1993.

[6] Peter A. Beerel, “CAD tools for the synthesis,
verification, and testability of robust asynchronous
circuits,” PhD thesis, Stanford Univ., 1994.

[7}] Stephen H. Unger, “Asynchronous sequential
switching circuits,” Wiley-Interscience, 1969.

[8] Alex Semenov, and et. al., “Partial order based
approach to synthesis of speed-independent
circuits,” In Proc. of Async'97, 1997.

[9] Fabio Somenzi, “CUDD: CU decision diagram
package release 2.1.2.,” Univ. of Colorado at
Boulder, 1997.

[10] Jordi Cortadella, and et. al., “Petrify: a tool for
manipulating concurrent specifications and
synthesis of asynchronous controllers,” In Proc. of
the 11th Conf. Design of Integrated Circuits and
Systems, 1997.

361

he

{a) Input stuck-at fault model

S

he

" Reset function R (b) Output stuck-at fault model

Figure 1. An ACGpER signal network Figure 2. Fault model

Algorithm1)
nput . a target circuit C, the set of reachable states according to

the specification R(C), and FaultList
Output : the set of undetectable fault list, Undetect

tI)JngietectFaultIdentiﬁcation(C, R(C), FaultList)
egin
Undetect = &))
for every x stuck-at c in FaultList . _
F, = the function of the uniquely determined output variable
when x stuck-at ¢ fault occur;
Fg=F, (x¢~c’=A+BF,;
F§= F, (x¢=c) = C+D-F;

Cl: if(A®C =1 && B=D=0
Assignments = ConflictCheck(A®C =1);
if Assignments # FALSE
Traverse RSC), Assignments);
else put the fault into Undetect; break;

endi
Cl”: else if (A®C =1 && B=D=0
Assignments = ConflictCheck(A®C =1 && B=D=0);
if Assignments # FALSE
Traverse(R(C), Assignments),
else. tgoto Cz;
endi
endif)
C2: Assignments = ConflictCheck(F’=0 && (A+B)®(C+D) = 1)
if Assignments # FALSE
Traverse(R(C), Assignments);
else tgoto C3: .
endi
C3: Assignments = ConflictCheck(F’=1 && (A+B)Y®(C+D)=1)
if Assignments # FALSE
Traverse RﬁC), Assignmentsz);
else Fut the fault into Undetect; break;

endi
endfor
return Undetect;
end
Figure 3. Algorithm 1
m: Stable state

M -’g: Unstable state ad xc
* : Reser state Pl PO
M 00— 00
e ~ 10— 01
! M 00—» 01
\ / 01— 11
. 11— 10
A 01— 10
M 00-— 00
" 10— 01
c- 11— 01
f \ 01— i1
¢ M 11—+ 10
10— 10
\- . / 00— 00

(d) Generated

{c) Stabje State Graph

Algorithm 2
nput : a target circuit C and a specification STG for C
Output : Test[fault][test] which contains test for the relevant fault

ATPG(C, STG)
begin
StateGraph = GenerateStateGraph(STG);
StableGraph = GenerateStableé)raph(StateGraph N
.Seqilences[i = GenerateSequences(StableGraph),
i = LengthofSequences;
FaultList = All possible fault;
UndetectableFaultList = &
Test[fauit][test] = &)
GoodCircuit]i] = SymbolicTraversal(C,Sequences),
PotentialUndetect = PotentialUndetectAnalysis(C);
Undetect = UndetectFaultldetification(C ,GoodCircuit([],
PotentialUndetect);

for(every fault f in (FaultList-Undetect))
C¢=FaultInsertion(C,f);

i=0;

o
FaultyCircuit = NextStableState(Cy, Sequencesi]);
If (i == LengthofSequences)

ut the tault f into UndetectableFaultList
reak;
else
Test[f][i] = Sequences{i];
endif;

1++; .
while(GoodCircuit[i] # FaultyCircuit)
endfor
dretum Test{][]

€n

Figure 5. Algorithm2

Table 1. Experimental results 1:
Test eeneration without undetectable fault identification

al | -Fault Modeling ;

Example | pot Cov.(% (Ts‘;‘e) ' ge%f. o
chul72 | 24 100 0.04 8 67
full 36 97.2 1.06 15 | 87
hazard 40 | 86.75 0.92 13 | 138
vbe5b 44 | 93.18 2.58 36 | 145
chuls50 | 48 | 95.83 2.69 13 | 145
martin 48 | 91.67 4.07 13] 133
chul33 50 88 7.27 37 | 269
converta | 58 | 98.28 7.10 13 | 147

Table 2. Experimental results 2:
Test generation with undetectable fault identification

Example Potential | U Iden’}lif;f:tlon
U fault { Fault

(Sec.)
chul72 4 0 0.11
full 8 1 0.14
hazard 8 2 0.17
vbeSb 9 3 0.21
chuls0 10 2 0.21
martin 10 4 0.16
chul33 10 6 0.26
converta 14 1 0.28

(a) Signal Transition Graph (b) State Graph Sequences

Figure 4. An example of the specified sequence generation

s

