• Title/Summary/Keyword: Process of Excavation

Search Result 316, Processing Time 0.026 seconds

A Study on Excavation Path Design of Excavator Considering Motion Limits (실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구)

  • Shin, Dae Young
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Design Analysis of Substructure for Offshore Wind Pile Excavation (해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석)

  • Lee, Gi-Ok;Sun, Min-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

A Study on the Variation of the Surface and Groundwater Flow System related to the Tunnel Excavation in DONGHAE Mine Area(l)-Concern on Hydrological and Rock Hydraulic Approach (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구(l)-수문학 및 암반수리학적 접근을 중심으로)

  • 이희근;전효택;이종운;이대혁;류동우;오석영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.347-362
    • /
    • 1995
  • The purpose of this study was that manage effectively the excavation process of the transport tunnel in DONGHAE mine area by investigating the variationof the surface and groundwater flow system around the tunnel and neighbouring villages. Thus, the effect of excavation and water-prrofing process on the water system has been studied through the naked eye survey of the tunnel and the surface outcrop, joint survey, core drilling, the measurement of the surface water quantity, evapotranspiration and precipitation analysis, rock hydraulics approach, the pressure test of boreholes, the variation of the water level, and finally the numerical analysis. From above approachs, we derived the conclusion that the exhaustion of the surface water was not caused by the tunnel excavation on the groundwater system was minimized by effective water proofing process.

  • PDF

Mechanical evolution law and deformation characteristics of preliminary lining about newly-built subway tunnel closely undercrossing the existing station: A case study

  • Huijian Zhang;Gongning Liu;Weixiong Liu;Shuai Zhang;Zekun Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.525-538
    • /
    • 2023
  • The development of a city is closely linked to the construction and operation of its subway system. However, constructing a new subway tunnel under an existing station is an extremely complex task, and the deformation characteristics and mechanical behavior of the new subway tunnel during the excavation process can greatly impact the normal operation of the existing station. Although the previous studies about the case of underpass engineering have been carried out, there is limited research on the condition of a newly-built subway tunnel that closely undercrossing an existing station with zero distance between them. Therefore, this study analyzes the deformation law and mechanical behavior characteristics of the preliminary lining of the underpass tunnel during the excavation process based on the real engineering case of Chengdu Metro Line 8. This study also makes an in-depth comparison of the influence of different excavation methods on this issue. Finally, the accuracy of numerical simulation is verified by comparing it with on-site result. The results indicate that the maximum bending moment mainly occurs at the floor slab of the preliminary lining, while that of the ceiling is small. The stress state at the ceiling position is less affected by the construction process of the pilot tunnel. Compared to the all-in-one excavation method, although the process of partial excavation method is more complicated, the deformation of preliminary lining caused by it is basically less than the upper limit value of the standard, while that of the all-in-one excavation method is beyond standard requirements.

Risk Factor Selaction and Safety Management Plan in the Underground Excavation Construction (지반굴착공사에서의 위험요인 선정과 안전관리방안 연구)

  • Won, Yu-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.31-37
    • /
    • 2019
  • When the foundation work of the underground part of the building structure or the excavation work of the civil engineering structure is carried out, there is the earthwork work by the inevitable process. As the economic situation continues to develop, construction in urban areas is becoming bigger and higher in scale due to the expansion of infrastructure and the rescue of urban dwellings in urban areas, and excavation of underground roads is inevitable. Excavation of the underground part may cause problems in the process difficulty and safety of the earthworks due to the complexity and various characteristics of the ground selected without consideration of the ground characteristics and site conditions. In order to complete the required facilities, it is necessary to secure the design and construction of the retaining walls. In order to complete the required construction, It is an important factor satisfying construction period and economical efficiency.

New Excavation Method and its Applications for Fossil Footprints (발자국 화석의 새로운 발굴 방법 및 적용)

  • Kim, Kyung Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.143-161
    • /
    • 2016
  • This study is concerned with new excavation methods and techniques for fossil tracks/trackways and its application. Unlike the body fossils such as dinosaur skeletons and isolated bones, the Mesozoic vertebrate tracks and trackways including dinosaurs, pterosaurs, and birds are usually discovered in long-distance trackways. The trackways are also found in a large area of the bedding plane and preserved as two-dimensional and flat characteristic. New excavation methods for fossil footprints reflecting these characteristics have been designed to excavate fossil footprints preserved on wide bedding plane and applied to five excavation fossil tracksites. As a result of its application, the tracks and trackways of dinosaur, pterosaur, and bird were successfully excavated. And based on various excavation cases, the step-by-step process and details of the fossil footprints excavation was proposed.

A Study on the Improvement of Excavation and Research Process - With a Focus on Building a Silla Ancient Tombs Database - (문화재 발굴 조사·연구 과정의 개선 방안 연구 - 신라 고분 데이터베이스 구축을 중심으로 -)

  • Jung, Ikjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.4-23
    • /
    • 2020
  • In this article, the excavation and research of cultural assets were set as a process and the improvement measures were considered. To this end, we examined the process of excavating cultural assets to diagnose problems, suggested changes in the format of reports and the establishment of a database, and drew up improvement models for Silla's ancient tombs and research. The problems of the current process of excavating cultural assets are as follows. First, investigation and research fail to integrate and merely comprise 'examination as an administrative procedure' or 'investigation for the sake of investigation', which ultimately hamper research and achievement. Second, there are differences in the composition or description of the report by surveyors or excavation agencies, which make it difficult to integrate data at a higher level. Third, the current form of reporting remains in analog format such as books and PDFs, which not only reduces continuity and efficiency to the research phase, but also lags behind the rapidly changing times. We believe that the improvement of these problems should be achieved by computerizing reports, converting them into digital formats, and establishing them in a database. First, regarding the transition to report format, it was pointed out that the form of excavation data, the final stage of the excavation process, remains analog and the improvement model was presented from the perspective of linking it to excavation and research, and the justification was emphasized through comparison with other cases. Second, the database reviewed the build model for Silla tombs. To this end, the purpose and expected effects, targets, progress, attributes, categories, and interfaces were examined.

Excavation Support Design and Stability Analysis of Shallow Tunnel in Heavily Fractured Rock Mass (연약 파쇄 지반내 터널의 굴착.보강 설계 및 안정성 분석)

  • Shin, Hee-Soon;Synn, Joong-Ho;Park, Chan;Han, Kong-Chang;Choi, Young-Hak;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.87-92
    • /
    • 2000
  • In excavation of tunnels especially located in shallow depth, it is not rare to meet geological change in excavation progress worse than expected in the initial design stage. This paper present a case study on the re-design of excavation and support system of a shallow tunnel under construction where it meets the unexpected bad geological condition during excavation. The detailed geological investigation shows that the rock mass is heavily weathered and fractured with RMR value less than 20. Considering this geological condition, the design concept is focused on the reinforcement of the ground preceding the excavation of tunnel. Two design patterns, LW-grouting & forepoling with pilot tunnelling method and the steel pipe reinforced grouting method, are suggested. Numerical analysis by FLAC shows that these two patterns give the tunnel and roof ground stable in excavation process while the original design causes severe failure zone around the tunnel and floor heaving. In point of the mechanical stability and the degree of construction, the steel pipe reinforced grouting technique proved to be good for the reinforcement of heavily fractured rock mass in tunnelling. This assessment and design process would be a guide in the construction of tunnels in heavily weathered and fractured rock mass situation.

  • PDF