• Title/Summary/Keyword: Process improvement

Search Result 7,900, Processing Time 0.039 seconds

Analysis of sewage treatment process for the improvement of T-N removal process (T-N 제거공정 개선을 위한 하수처리장 공정 분석)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.99-107
    • /
    • 2018
  • In order to design the improvement process for T-N removal, the treatment process of Suyoung, Gangbyeon, and Noxan sewage treatment plants (STP) in Busan was anlayzed. Suyoung STP shows a T-N removal efficiency of about 69.8% with MLE(Modified Ludzack ettinger) and A2O+MBR. However, it is necessary to improve the process to maintain over DO of 1 mg/L and is required to install a flow control tank to minimize the rainfall effect. Gangbyun STP shows a about 70.2% T-N removal efficiency with A2O+GFF(gravity fiber filtration). However, in order to improve T-N removal efficiency, it is needed to install MLE process to treat recycle water. Noksan STP shows a T-N removal efficiency of about 71.0% with MLE+Chemical treatment and shows stable T-N concentration in effluent. However, it is required a toxic chemical management process because bad wastewater flows into the STP, also is necessary a process improvement in order to increase internal recycling ratio. Especially, it is required a process improvement to increase HRT of nitrification tank because Suyoung and Gangbyeon STPs shows low nitrification efficiency during winter season.

Heuristic Algorithm for Selecting Mutually Dependent Qualify Improvement Alternatives of Multi-Stage Manufacturing Process (다단계제조공정의 품질개선을 위한 종속대안선택 근사해법)

  • 조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.18
    • /
    • pp.7-15
    • /
    • 1988
  • This study is concerned with selecting mutually dependent quality improvement alternatives with resource constraints. These qualify improvement alternatives art different fro the tradition at alternatives which are independent from each other. In other words, selection of any improvement alternative requires other related specific improvement. Also the overall product quality in a multi stage manufacturing process is characterized by a complex multiplication method rather than a simple addition method which dose not allow to solve a linear knapsack problem despite its popularity in the traditional study. This study suggests a non-linear integer programming model for selecting mutually dependent quality improvement alternatives in multi-stage manufacturing process. In order to apply the model to selecting alternatives. This study also suggests a heuristic mode1 based on a dynamic programming model which is more practical than the non-linear integer programming model. The logic of the heuristic model enables 1) to estimate improvement effectiveness values on all improvement alternatives specifically defined for this study. 2) to arrange the effectiveness values in a descending order, and 3) to select the best one among the alternatives based on their forward and backward linkage relationships. This process repeats to selects other best alternatives within the resource constraints. This process is presented in a Computer programming in Appendix A. Alsc a numerical example of model application is presented in Chapter 4.

  • PDF

Manufacturing process improvement of offshore plant: Process mining technique and case study

  • Shin, Sung-chul;Kim, Seon Yeob;Noh, Chun-Myoung;Lee, Soon-sup;Lee, Jae-chul
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-347
    • /
    • 2019
  • The shipbuilding industry is characterized by order production, and various processes are performed simultaneously in the construction of ships. Therefore, effective management of the production process and productivity improvement form important key factors in the industry. For decades, researchers and process managers have attempted to improve processes by using business process analysis (BPA). However, conventional BPA is time-consuming, expensive, and mainly based on subjective results generated by employees, which may not always correspond to the actual conditions. This paper proposes a method to improve the production process of offshore plant modules by analysing the process mining data obtained from the shipbuilding industry. Process mining uses information accumulated from the system-provided event logs to generate a process model and determine the values hidden within the process. The discovered process is visualized as a process model. Subsequently, alternatives are proposed by brainstorming problems (such as bottlenecks or idle time) in the process. The results of this study can aid in productivity improvement (idle time or bottleneck reduction in the production process) in conjunction with a six-sigma technique or ERP system. In future, it is necessary to study the standardization of the module production processes and development of the process monitoring system.

A Study on the Design of Experiment Planning for Quality Improvement in Flow Shop Manufacturing System (흐름생산시스템에서 품질향상을 위한 실험 계획 설계 -이산화망간-리튬 전지의 품질 향상을 중심으로)

  • 박해천;홍남표
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.63
    • /
    • pp.101-110
    • /
    • 2001
  • This study is concern with the design of experiment planning for quality improvement in flow shop manufacturing system. In this study, the procedure of two stage experiment planning are proposed and applied to the manufacturing process of Li/$MnO_2$ batteries. The result of in this paper is that, compared with the current process conditions, 52% of the insulation inspection process, 81.6% of the first premier discharge process, 98.5% of the second premier discharge process, 84.7% of O.C.V./C.C.V. process, and 86.2% of voltage inspection process are decreased. After a given period of time, the life of the batteries extends to 75 hours, which means the 15% improvement in capacity. In case that the proposed methods are applied to the process Improvements of the flow shop manufacturing system, the much effected in experimental cost- saving and quality improvement.

  • PDF

The Design Quality Comparison and Inspection Efficiency for Hardware and Software

  • Fengyu, Zhao;Yizhong, Ma
    • International Journal of Quality Innovation
    • /
    • v.7 no.1
    • /
    • pp.90-97
    • /
    • 2006
  • The process of producing software differs in many aspects from that of traditional manufacturing. Software is not manufactured in the classical sense. Development of software more closely resembles the development effort that goes into design new product [1-3]. In this article, we first describe the foundations of process improvement, which all processes can share. The process improvement differences between software and manufacturing process are then discussed, and a defect driven process inspection and improvement is introduced. Based on the discussion, two experiments were designed and the results of the results were collected. Through the comparison, we found that some efficient quality improvement approaches can be easily adapted in the software improvement and that the inspection efficiency is also significant.

The Development of New Cost-Effective Optimization Technology for OLED Market Entry

  • Kwon, Woo-Taeg;Kwon, Lee-Seung;Lee, Woo-Sik
    • Journal of Distribution Science
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2019
  • Purpose - This study aims to improve the distribution structure of the OLED market and develop cost-effective optimization techniques. Specifically, it is a study on the optimization of ferric chloride to improve the etch of SUS MASK for OLED. Research design, data, and methodology - Applying the optimal conditions of the experiment, the final confirmation was evaluated for improvement by the Process Capability Index (Cpk). It is possible to derive social performance such as improvement of precision of SUS MASK manufacturing, economic performance such as defect rate, reduction of waste generation and treatment cost, technological achievement such as SUS MASK production technology, improvement of profit structure of technology development and process improvement do. Results - The improvement of the Cpk before the improvement was made was confirmed to be 0.57% with a defect estimate of 25.07% with a failure estimate of 0.57% after the improvement, and 8.84% with a failure estimate of 0.57% level after the improvement. Conclusions - If the conclusions obtained from the specimen experiment are applied to the manufacturing process of SUS MASK, it will be possible to expect excellent cost-effective competitiveness due to the improvement of precision and reduction of defect rate to enhance the OLED market penetration.

Algorithm Development of Electric Door Lock for Security Improvement (전자 도어록의 보안성 향상을 위한 알고리즘 개발)

  • 장긍덕;고영준;남효덕;장호경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.515-518
    • /
    • 2001
  • In this study, the electric door lock using the password input system for security improvement was fabricated. The security has been improved by using the multiple micro process. The controller with solenoid valve has been designed indirect driving system for releasing the door lock system. Also, the self checkup system for improving the trustworthy was developed with two kinds of micro process. The results will be applied IC card system and fingerprint identification system for security improvement.

  • PDF

Optimal Imperfect-Quality Inventory Models for Continuous and Discrete Shipping with Process Improvement and Setup Reduction (프로세스 품질 개선과 셋업 절감을 고려한 연속 및 불연속 배송 환경에서의 최적 불완전 품질 재고 모형)

  • Kim, Dae-Soo;Yoo, Seung-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.11-28
    • /
    • 2009
  • Intelligent investment in setup cost reduction and process reliability improvement is crucial to an emerging integrated lean six sigma practice today. This study examines a cost-minimizing problem of jointly determining production lot size, setup cost reduction, and process reliability improvement decisions for a manufacturer with an imperfect production process. We develop models for previously untapped discrete shipping in a supply chain context as well as continuous shipping and solve them optimally using differential calculus and nonlinear programming. We also conduct analytic and numerical sensitivity analyses to provide various important managerial insights into practices.

The Failure Mode and Effects Analysis Implementation for Laser Marking Process Improvement: A Case Study

  • Deng, Wei-Jaw;Chiu, Chung-Ching;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.137-153
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Process Quality Improvement through Improving Measurement System for Internal Diameter of Gun Barrel (포신 내경 측정시스템 개선을 통한 공정품질 향상)

  • Park, Young Min;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.633-642
    • /
    • 2023
  • Purpose: The variation of the internal diameters of gun barrel incurs a lot of reworks in gun barrel manufacturing process and the significant quality problem of gun barrel. And it is likely to stem from the current measurement system for the internal diameter of gun barrel and the related manufacturing process as well. The purpose of this study is to improve the gun barrel manufacturing process through improving measurement system. Methods: The improved measurement system using laser can measure the internal diameters of gun barrel more accurately, and the properly adjusted honing process reduces the variation of internal diameters of gun barrel. Results: Comparing the mean square error of internal diameters for 6 gun barrels measured before and after process improvement shows that the variation of gun barrel internal diameters was significantly reduced after the process improvement. Conclusion: The introduction of improved measurement system for the internal diameters of gun barrel and the adjustment of related honing process results in the reduction of reworks of gun barrels and their internal diameter variations.