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Optimal Imperfect-Quality Inventory Models for Continuous and
Discrete Shipping with Process Improvement and Setup Reduction

DaeSoo Kim** - Seung Ho Yoo™***

m Abstract m

Intelligent investment in setup cost reduction and process reliability improvement is crucial to an emerging in-
tegrated lean six sigma practice today. This study examines a cost-minimizing problem of jointly determining production
lot size, setup cost reduction, and process reliability improvement decisions for a manufacturer with an imperfect pro-
duction process. We develop models for previously untapped discrete shipping in a supply chain context as well as
continuous shipping and solve them optimally using differential calculus and nonlinear programming. We also conduct
analytic and numerical sensitivity analyses to provide various important managerial insights into practices.

Keyword : Inventory, Imperfect Process, Process Reliability Improvement, Setup Reduction,
Lean Six Sigma

1. Introduction ma program has received an enormous amount
of attention in practice, as found by global master
Recently an emerging integrated lean six sig- firms including Lockheed Martin, Honeywell Aer-
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ospace, Procter and Gamble and Toyota Motor
Company [10]. Particularly notable is General
Electric (GE), which has achieved tremendous
success by going through three major phases of
the process reengineering initiative (i.e., six sig-
ma, e-business digitization, and lean) since early
1990s. The essence of their lean six sigma pro-
gram lies in reducing not only lead time including
setup time and related costs (with lean) but also
process variability (with six sigma) in order to
better match demand and supply through process
synchronization (with digitization). Their current
effort is centered on integrating and applying
these practices to their internal and external sup-
ply chains, where the shipping of lots produced
in imperfect production lines occurs continuously
and discretely in meeting demands. For the suc-
cessful execution of this lean six sigma program,
it is imperative to make an intelligent investment
decision to reduce lead time and related cost,
particularly setup time and cost, and improve
process reliability, along with lot sizing. Thus,
one of the important practical research questions
to address is what level of investment a firm
needs to make in reducing setup cost and im-
proving process reliability along with lot sizing
in order to minimize total relevant cost.

With this motivation from a recent practice
perspective, we revisit previous relevant re-
search areas : imperfect-quality inventory man-
agement and lot sizing, process reliability im-
provement and setup reduction. More specifi-
cally, this paper aims to develop imperfect-qual-
ity inventory models of simultaneously de-
termining optimal production lot size and invest-
ment levels of setup cost reduction and process
reliability improvement. We examine situations

where the shipping of demands occurs not only

continuously as in the classic economic produc-
tion quantity (EPQ) setting but also discretely
as in a supplier-buyer supply chain environment.

In the area of imperfect-quality inventory mo-
dels for an imperfect production process yielding
defective units, most of the previous researches
have focused on finding a production lot size and
other variables in situations where process reli-
ability or defective proportion is given by a func-
tion or a value [1, 11, 14, 19, 20, 21, 24, 27-31,
33, 39, 43, 45] or on determining a process reli-
ability level with other variables [3-5, 22, 23, 26,
38, 40] (see also Yano and Lee [42] for a review).
Some studies have examined production systems
which deteriorate in every cycle as run cycles
progress after an initial state involving no error
(11, 14, 19-21, 24, 26-28, 30, 39, 43], while others
have investigated imperfect production proc—
esses with no deterioration over time [1, 3-5, 22,
23, 31, 33, 38, 45]. Mostly, these studies have ex-
amined cost-minimization models that reflect the
internal effect of defects which increase operat-
ing costs. These include inspection cost [14,
19-21, 24, 27-29, 31, 33, 39, 43, 45], investment
cost as a function of a production process reli-
ability [18-25], additional production cost to
compensate for defect production [1, 11], rework
cost [14, 19-21, 24, 26, 30, 39, 40, 43], and restora-
tion cost of a machine or system [14, 19-21, 24,
27, 28, 39, 43]. Further, many previous inventory
models dealt with different ways to handle de-
fective units, including instantaneous rework [14,
19-21, 24, 26-30, 39, 43], scrap at no cost [1, 3-5,
11, 22, 23, 33, 38, 45], or salvage [31].

Related to six sigma or total quality manage-
ment practices, process reliability improvement
has been known to have significant impact on

a firm’s investment decision, production lot size,
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product quality, setup and inventory holding
costs, and profitability [7-9). Further, it has been

shown that the investment for process reliability

improvement decreases external failure costs of
return, warranty and goodwill penalty from
quality dissatisfaction by causing less defects.
This reduces internal costs of disposing of de-
fects such as rework, scrap and revenue loss
from the salvage of defective items [13] as well.

Further, in the practice under the lean or just-
in-time (JIT) philosophy, setup reduction has
been known to have a positive effect on a firm's
costs, flexibility and profitability [12, 32, 36, 41].
More specifically, Porteus [25] and Spence and
Porteus [35] analytically studied the impact of
setup cost and time reduction on lot size and ef-
fective capacity in the classic economic order
quantity (EOQ) model with continuous shipping.
Billington [2] extended the classic economic pro-
duction quantity (EPQ) model by including setup
cost as a function of capital expenditure, Kim and
Arinze [18] developed a knowledge-based deci-
sion support system for setup reduction invest-
ment.

Finally, more directly related to our research
are a few analytic studies of simultaneously de-
termining lot sizing and investment decisions for
process reliability improvement and setup cost
reduction investment for an imperfect production
process. Since the pioneering work by Porteus
[26] for a deteriorating process environment,
Cheng [4] investigated this simultaneous deter—
mination problem for an imperfect production
process with no deterioration over time, using
geometric programming, and recently Leung [23]
generalized this problem.

From the literature review and practices above,

we can identify some crucial points which serve
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as underpinning of our research. First, from a
practice point of view, it is natural and imper-
ative to investigate key decision variables related
to lean and six sigma practices together, as evi~
denced by recent integrated lean six sigma prac—
tices and considering the fact that the lean/JIT
manufacturing challenge is built upon quality
improvement (see e.g., Deming {8] ; Hall [12] ;
Suzaki [36] ; Shingo [34]). Second, from an aca-
demic standpoint, there have been only a few an-
alytic studies of simultaneously determining lot
sizing, process quality improvement and setup
cost reduction decisions for an imperfect pro—
duction process [4, 23, 26]. And third, most of
the previous relevant studies have examined the
continuous shipping (EOQ or EPQ) environment,
although most of the supply chain practices ex-
hibit discrete shipping environments where pro-
duced lots are shipped discretely from a supplier
to a buyer.

Given this motivation, we propose analytic
models which determine an optimal production
lot size along with optimal investment levels of
process reliability improvement and setup cost
reduction. Built upon the previous extended EOQ
or EPQ studies for an imperfect production proc—
ess with continuous shipping, we also examine
a discrete shipping environment in which the
shipping of an entire lot occurs discretely at the
end of each production cycle. This setting is fre~
quently found in a dyadic supplier—buyer supply
chain including a component assembly plant [17]
or serial two-stage production and inventory
systems [16, 37] to name a few. Then we develop
an optimal solution approach based on nonlinear
programming and differential calculus. We also
perform both analytic and numerical sensitivity

analyses to provide key managerial insights into



practices.

The significance of this study may lie in not
only jointly determining optimal lot size and in-
vestment levels of the prerequisites (i.e., process
reliability improvement and setup cost reduction)
for important lean six sigma practices today, but
also examining previously untapped discrete
shipping environments in dyadic supply chains
as well as continuous shipping. The rest of the
paper is organized as simultaneous imperfect-
quality inventory optimization models for con-
tinuous shipping and for discrete shipping, and
numerical examples and optimal solutions along
with managerial implications from sensitivity
analyses, followed by concluding remarks with

future research directions.

2. Imperfect-quality Inventory
Model for Continuous Shipping

The problem we investigate is to determine
optimal cost-minimizing production lot size and
investment levels for setup cost reduction and
process reliability improvement for a stable but
imperfect production process with continuous
shipping of non-defects to satisfy demands as
in the economic production quantity (EPQ) model.
The costs include setup and inventory holding
costs, quality failure costs from defect pro-
duction, and investment opportunity costs need-
ed for setup cost reduction and process reliability
mprovement in an integrated lean six sigma
practice.

To facilitate the discussion, we use the follow-

ing notation :

Q : production lot size per setup (decision
variable ; unit/cycle)

St cost per setup (decision variable ; $/set-
up), where S < Sy (= current level)

R . process reliability level or non-defect rate
(decision variable), where 0 < Ry (= cur-
rent level) < R < 1

d: demand rate (unit/unit time)

V: total production given R (unit/unit time),
satisfying demand = : d/R

r: production rate (unit/unit time), where r
> d/Ry = d/R (= V)

c: unit production (including inspection)
cost ($/unit)

i inventory holding cost rate fraction
(/unit/unit time)

[: unit failure cost ($/unit)

Ks : capital investment ($/unit time) for setup
cost reduction from Spto S = : aS -aSo ’,
and

Kp © capital investment ($/unit time) for proc-
ess reliability improvement from Ry to K
= mR"-mRy’, where p > 1 for Kz to be
convex to ensure more investment in an
increasing manner for more process reli-
ability improvement, and where aSy ? and
mR,’ insure that no investment is needed
at the current setup cost and reliability
level.

[Figure 1] depicts the behavior of the im-
perfect—quality inventory model for continuous
shipping as in previous studies [1, 3-5, 22, 23,
31, 33, 38, 45]. In each production cycle (Q/V),
a production line incurs setup cost (S) and pro—
duces a lot (&) at a unit production (and in-
spection) cost (c). Due to the imperfect nature
of the production process, each lot produced con-
tains defects with a defective proportion of (1-

R). During each production run, the lot is in-
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[Figure 11 Continuous shipping inventory model for an imperfect process

spected and sorted out into defects and non-de-
fects with perfect (100%) inspection. Those scre-
ened defects are assumed to be disposed at the
end of each production run. And it is also as-
sumed that only non-defective units (R@Q) are
continuously replenished and shipped fo meet the
demands (d) in each cycle. Thus, the total pro-
duction volume per unit time (V) needs to be d/R,
where d/R < d/Ry and Ry denotes the current
level of process reliability before investment for
improvement. The production rate (r) is assumed
to be greater than d/Ry, to ensure no shortages
of satisfying the demands. And each defect pro-
duced incurs unit cost of failure () including
scrap or environmental concerns related to dis-
posing of a defective unit. Although the defect
disposition can take various forms such as re-
work, salvage to a second market and scrap, we
do not include all the details, since the focus of
this paper is on investment decisions on setup
cost reduction and process reliability improve-
ment (see Yoo [44] for the modeling of incor-
porating various defect disposition options with
different inspection methods).

Regarding inventory holding, due to continuous

shipping as shown in [Figure 1], the maximum
inventory becomes (Q/r)(rR-d) for non-defects
similarly as in the EPQ model with R = 1, while
that for defects becomes Q(1-R). Thus the aver-
age inventory per cycle of Q/V (= QR/d) be-
comes QXRY/d-2R/r +1/r)/2, consisting of cycle
inventory of non-defects (Q*(Rd-R/r)/2, ie.
lower triangle) and defects ((QX1-R)/r/2, ie.
upper triangle). So the average inventory per unit
time becomes [QHRYd-2R/r+1/r)/2}V/Q) =

Q(RY/d-2R/r + 1/r)(d/R)/2. Further, the invest-
ment costs of setup cost reduction and process
reliability improvement are defined as oppor-
tunity costs (iKs, iKg) in power function forms,
incremental from the current levels (see Porteus
[25,26] ; Spence and Porteus [35] ; Cheng [4] ;

Lee et al. [22] ; Leung [23]).

Below is the continuous shipping model for si—
multaneously finding optimal production lot size
or extended EPQ (@), reduced setup cost (S¥)
and improved process reliability level (") which
minimize total costs per unit time (7'C), consist—
ing of total production (TPC), inventory (TI0)
(ie., setup (TSC} and inventory holding (THC()),

failure (TLC), and investment for setup cost re-
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duction (TUC) and process reliability improve-
ment (TRC).

Min TC(Q, S, R)=TPC+TSC+THC+TLC+TUC+TRC

sV (R
=cV+—+icQ— ——2—R+l l/—+l(l—R)V+iKs+i.KR
0 2\d r rj)o

_ . 2
_(c+l0-R)d  Sd icd(R" 2R 110 . oo
R RO 2\d r rJR
+imR® —(iaS,” +imR,") 1)

st. S< S anddir <Ry <R <1 2

Proposition 1 : The following is true :
a:TA®Q, S, R) is strictly convex and therefore
has a unique global minimum.

28
ic(RP/d=2R/r+1/r)’

&)

b Q(S, R)=\/

RZ
TICS, R)= \/21'ch2{7—3§+%)%, and (4)

)= (e 11=R)d

TC(S, R
( R 5)
2
+J2ich2 (R——Z—R+l]-1-2— +iaS™° +imR®
d r r)R

~(iaS,”° +imR).

¢! @S, R) is monotonically increasing con-
cave in S, while it decreases in E, given
dir< Ry < R <1
TIC(S, R) is monotonically increasing con-
cave in S, and decreasing convex {(concave)
in R in the range of R satisfying R@3-
2R)/d >(<) BR-1)(2-R)/r, given d/r < Rp

<Rk <1
1 i
20%ia® 2o+ R’ 2041
. S(R)=
d: 5% [ cd’ ] [Rz/d—ZR/r+l/r]
and (6)
1
2Y"*( 20%ia® 225D (
_[2 7)
ow-(2) 25

R Tori
[(Rz/d—2R/r+1/r)‘”]j
e : S(R) is monotonically increasing in K.
Q(R) decreases in K outside the range of
R, while it increases in the range of R,
where the range of R, given d/r < Ro <
R < 1, is computed as

glr=(@/r+Qo+)id)/r
Qo+1)/d

<a/r+\/(70'2/r+(20'+1)/d)/r
(2o +1)/d '

Proof : See <Appendix A>.

Observe from Proposition 1(b) that the pro-
duction lot size Q(S, R) and total inventory cost
TIC(S, R) with R =1 are identical to the EPQ
solutions. Also note from Proposition 1(c) that
Q(S, R) increases in S given a fixed R, while
it decreases in R given a fixed S. This result cor-
responds to a partial integration situation where
only one investment option is considered. In the
fully integrated, simultaneous optimization in-
volving both investment options, however, it is
interesting to find that the lot size Q(R) can ei-
ther increase or decrease in R depending on its
range due to the tradeoff between reduced setup
cost S(R) and process reliability level R, given
that S(R) increases in R exhibiting the tradeoff
between the two investment options, as shown
in Proposition 1(e).

Now since TC'o(@, S, R)=TC’s(@, S, R) =
TC'R(Q, S, R) =0 in (A1-A3) in Appendix A are
not solvable simultaneously but TC(Q, S, R) is
strictly convex (see Proposition 1(a)), we obtain
the global minimum solutions by solving the fol-
lowing TC(R) reduced from TC(Q, S, R) in (1),
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by substituting S(R) in (6) into TC(S, R) in (6) :

Min TC(R) = TPC(R) + TIC(R) + TLC(R) + TUC(R) + TRC(R)

o
. L o p2 / yovy
=%+(2o7’a)1‘7”(2icd2)2"”(———————‘R /d"ZR”“”TM

R2
: 9 -
-Ryd ed” V(R /d~2RIr+1/r 0%
+—— T 202t 2
R o’ia R
+imR? ~{iaS,”" +imR,") 8

st. S < S anddr <Ry < KR<1 in@

Proposition 2 : The following is true :

a: TPC(R) is monotonically decreasing con-
vex in K.

b 1 TICR) and TUCR) are decreasing convex
{concave) in R in the range of R satisfying
RA3-2R)/d >(<) ((2R-1(3-2R) + (20 +1)
/@0 + DYA-R’)r, given d/r <Ry < R < 1.

¢ TLC(R) is monotonically decreasing con-
vex in K.

d: TRC(R) is monotonically increasing con-
vex in R, since p > 1,

Proof : Differentiating each cost component in
(8) with simple algebra proves part
(a—d). Since it is straightforward, we
omit the details. Thus, the proof is

e

& s WAaRe 7 29 34

From Proposition 2 for simultaneous opti-
mization, it is interesting to discover that the
tradeoff in optimal solutions with respect to R
exists between process reliability improvement
investment opportunity cost and all the other
cost components (i.e., production, inventory, fail-
ure, and setup cost reduction investment oppor—
tunity costs). And an increase in K decreases to-
tal production, inventory and setup cost reduc-
tion investment opportunity costs as well as fail-
ure cost. In a later section, we will numerically

show these behaviors.

3. Imperfect-quality Inventory
Model for Discrete Shipping

The discrete shipping model differs from the
previous continuous shipping model in that the
shipping of an entire Jot to meet the demands oc-
curs discretely at the end of each production
(run) cycle (see (Figure 2] for inventory behavior
and refer to the same notation used before). It
is worthwhile to examine this environment, since
it is typically found in dyadic supply chains or
two-stage production and inventory systems.
Further, the upstream supply chain in the EOQ

complete. O model reflects a situation where a firm receives
unit
14 Defects
OR = d(Q/V) for ..
- “Nog-defects
pd d
. \r R :
f = time
” o
T o= QR

[Figure 2] Discrete shipping inventory model for an imperfect process
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an entire lot at once each cycle before being con-
tinuously shipped to buyers. Thus, the maximum
inventory becomes simply the production lot size
(Q) and only non-defective units (R@) are ship-
ped at once at the end of each cycle (Q/V =
QR/d) to satisfy its cycle demand. Thus the av-
erage inventory per cycle becomes (@%/r)/2, con-
sisting of cycle inventory of non-defects (@
R/r)/2) and defects (@(1-R)/r)/2). So the aver-
age inventory per unit time becomes [(Q%/r)/2]
(V/Q) =(Q/2)d/(rR).

Similarly as before, this model below simulta-
neously finds the optimal operations batching
quantity (&', not an extended EPQ), reduced set-
up cost (S, and improved process reliability
level (R*) which minimize total costs (T°C), con-
sisting of total production (TPC), inventory
(TIC) (ie., setup (TSC) and inventory holding
(THC)), failure (TLC), and investment for setup
cost reduction (TUC) and process reliability im—
provement (TRO).

Min TC(Q, S, R)=TPC+TSC+THC+TLC+TUC+TRC

=cV+—S£+ic—Q-K+l(1—R)V+iKS +iK,
(0] 2r

_(c+l0-Rpd  Sd_ icdQ .
R RO 2Rr

aS™°

+imR® —(iaS, ° +imR,") ‘ (9)
st. S < Sanddr<R < R<1 10

Proposition 3 : The following is true :
a:TCQ, S, R) is strictly convex and therefore

has a unique global minimum.

28r
p: 95 B=y5 (1)
2icSd?
TIC(S, By = Ry  and (12)

: 2
oS, Ry=CHi=Rd | W
R Rr

+iaS™° +imR® — (iaS,”° +imR") (13)
¢ Q(S, R) is monotonically increasing con-
cave in S, whereas not affected by R.
TIC(S,R) is monotonically increasing con-
cave in S, whereas monotonically decreas-

ing convex in R.

2041

and (14)

1
20'2iazr]2"+1

d: S(R)z[ cd?

1
20 Y2 ( 2020y \22o) ;,
Q(R)=[;j ( o ] R2e (15)

e : S(R) is monotonically increasing concave in K.

Q(R) is monotonically increasing concave
in R.

Proof : See Appendix B.

Observe from Proposition 3(b—c) that Q(S, R)
and TIC(S, R) in the discrete shipping model
with R =1 are not identical to the EPQ solutions
for continuous shipping. Interestingly, Q(S, R)
for partial integration of considering only one in-
vestment option increases in S as in the con-
tinuous shipping model, but it is not affected by
R given a fixed S, different from the behavior
in continuous shipping. It is because the lot size
Q(S, R) depends on production rate (r) only, nei-
ther demands (d) nor process reliability level (R),
as seen from the inventory behavior in [Figure
2]. But note that TIC(S, R) is affected by all
those factors due to the tradeoff between total
setup and holding costs. In the simultaneous op-
timization of considering both investment op-
tions, however, be aware that lot size Q(R) is

only increasing in R, due to an increase in S(R)
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in A, different from the finding in the continuous
shipping, as shown in Proposition 3(e). These
different behaviors are illustrated numerically in
the next section.

Now in solving the model, since TC o(@, S, R)
=TCs(Q, S, R)=TC'»(Q, S, R) =0 in (BI-B3)
in Appendix B are also not solvable simulta-
neously as in continuous shipping but TC(Q,S,R)
is strictly convex, we obtain the global minimum
solutions by solving TC(E) below reduced from
TC(Q, S, R) by substituting (14) into (13).

Min TC(R) = TPC(R) + TIC(R) + TLC(R) + TUC(R) + TRC(R)

cd (2ied® [ 20%ate om0 Ry
_cd ,(2ied? )" 20%iar Yo o 1a-)
R r cd? R

Yty e 20
‘H.[{M‘uzlr] 2 lR 2on +imR” —(iaS,”" +imR))y  (16)
cd

st. S < Spanddfr < By < R < 1, in (10)

Proposition 4 : The following is true :

a: TPC(R) is monotonically decreasing con-
vex in K.

b : TIC(R) and TUC(R) are monotonically de-
creasing convex in K.

¢ : TLC(R) is monotonically decreasing con-
vex in R.

d : TRC(R) is monotonically increasing con-

vex in R.

Proof : Differentiating each cost component in
(16) with simple algebra proves part
(a-d). Since it is straightforward, we
omit the details. Thus, the proof is
complete. O

From Proposition 4 for simultaneous opti-
mization, we can see that again as in the con-

tinuous shipping model, the tradeoff in optimal

BelAg FA 294 4 Az 2 19

solutions with respect to K exists between proc-
ess reliability improvement investment oppor-
tunity cost and all the other cost components.
And an increase in R decreases total production,
inventory and setup cost reduction investment

opportunity costs as well as failure cost.

4. Numerical Example Solu-
tions and Managerial Im-
plications

This section illustrates solution differences bet-
ween the continuous and discrete shipping mod-
els for an imperfect process with both invest—
ment options (full integration, i.e., simultaneous
optimization), using the data set below. We also
show the results of these models with no invest-
ment option (basic model) and with only one op-
tion (partial integration of either setup cost re-
duction or process reliability improvement in-

vestment) for a comparative purpose.

Data set.
d = demand rate per unit time = 15,000 units/year
r = production rate per unit time (r > d/Ry > d/
R) =40,000 units/year
¢ = production (and inspection) cost per unit =
$150/unit
i = inventory holding cost rate fraction or a firm's
cost of capital = 0.3/unit/year
[ = failure cost of defects per unit = $50/unit
Kpr = process reliability improvement investment
$ per unit time = mR*-mR,” = 4,000,000(R*"-
0849
K = setup cost reduction investment $ per unit
time = aS "~ aSy = 1,000,000(5 '~ 2,000 1)

<Table 1> summarizes the optimal solutions

to (8) and (16) for continuous and discrete ship—
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ping, respectively, along with the basic and par- important to jointly consider setup cost reduction
tial model solutions and extreme point solutions and process reliability improvement investment
for the cases with (S=Sp, R=1) and (S=5°, R decisions for an integrated lean six sigma prac-
=1), where S°=optimal solution to S given R tice today.

=1, obtained by using a nonlinear programming In more detail, regarding total cost compo-
solver LINGO. As obvious from the result, the nents, for the cases with the reduced setup cost
fully integrated, simultaneous optimization mod- (S° or S*) as a function of R (see three columns
els realize the most savings in both continuous with the reduced setup in <Table 1>), observe

and discrete shipping environment. Thus, it is that TPC(R), TIC(R), TLC(R) and TUC(R) de-

{Table 1> Numerical solutions (S° R’ = Optimal solutions of S and R, given R=Ryor 1 and S = S re-
spectively)

(a) Continuous shipping model

Models Basic Partial Integration Full Extreme Points

. Current setup Reduced setup Current setup Reduced setup Current setup Reduced setup
Decision
variables and and current re- and current re- and improved and improved and perfect re- and perfect re-
costs liability liability reliability reliability liability liability

(Sp, Ro) (S°, Ro) (Sp, B (S, R S, D S D

S($/cycle) 2,000 1,027 2,000 1,04 2,000 1,059
R(%) 80.00 80.00 91.04 91.04 100.00 100.00
Q(unit/cycle) 1,792 1,285 1,600 1,161 1,461 1,063
TC($/year) 3,041,842 3,039,653 2,919,281 2,917,270 2,999,559 2,997,581
TPC($/year) 2,812,500 2,812,500 2,471,364 2,471,473 2,250,000 2,250,000
TIC($/year) 41,842 29,990 41,198 29,913 41,079 29,898
TLC($/year) 187,500 187,500 73,788 73824 0 0
TUC($/vear) 0 9,663 0 9,276 0 9,203
TRC($/year) 0 0 332,931 332,786 708,480 708,480

(b) Discrete shipping model
Models Basic Partial Integration Full Extreme Points
Current setup Reduced setup Current setup Reduced setup Current setup Reduced setup

I\l):;;stl)(l):s and and current and current and improved and improved and perfect and perfect
costs reliability reliability reliability reliability reliability reliability
(So, Ro) (S°, Ro) (So, % (S, R (So, 1) S D
S($/cycle) 2,000 1,118 2,000 1,391 2,000 1,622
R(%) 80.00 80.00 91.22 91.19 100.00 100.00
Q(unit/cycle) 1,886 1,410 1,886 1572 1,886 1,698
TC ($/year) 3,039,775 3,038,139 2,913,001 2,912,396 2,990,300 2,990,105
TPC($/year) 2,812,500 2,812,500 2,466,552 2,467,413 2,250,000 2,250,000
TIC($/year) 39,775 29,738 34,882 29,096 31,820 28,652
TLC($/year) 187,500 187,500 72,184 72,471 0 0
TUC($/year) 0 8,402 0 5,193 0 2,973

TRC($/year) 0 0 339,383 338,224 708,480 708,480
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crease in R, while TRC(R) increases in R, as an—
alytically shown in Proposition 2 and 4 for both
shipping models. Further, in terms of the differ-
ence between the two shipping models, it is in-
teresting to see that the continuous shipping en-
vironment requires a smaller lot size with more
setup cost reduction than the discrete shipping
case due to a higher burden of holding in-
ventories as shown by the magnitude of TIC(R)

(a) @ (unit/cycle)

and TUC(R) in <Table 1> and also in [Figure
1] and [Figure 2]. Furthermore, we can discover
that the impact of process reliability improve-
ment on setup cost is less in continuous shipping
than discrete shipping as shown by the magni-
tude of a reduced setup cost and an improved
reliability level in <Table 1> and also easily seen

by Proposition 1 and 3.
Now let’s further look at the effect of process

(b) TC ($/year)

2,000 3,050,000
- e _
S 1,800 { = 3,000,000
5\ 1]
2 s
g ~
2 1,600 L 2,950,000
S
1,400 2,900,000
0 0.1 0.2 0 0.1 0.2
RR, RR,
(¢) TPC ($/year) (d) TIC ($/year) (e) TLC ($/year)
2,900,000 43,000 210,000
E R 9 ood G
§ 2,600,000 5 39,000 5 140,000
£ 2 =
& & 2
3 S Q
£ 2,300,000 2 35,000 S 70,000
2,000,000 31,000 0
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
R-R, R-R, R-R,
) TUC ($/year) (g) TRC ($/year)
300,000 900,000
5 200,000 % 600,000
= =
z =
0 O
S 100,000 & 300,000
0 0 d
0 0.1 02 0 0.1 0.2

R-R

R-R,

[Figure 3] The effect of process reliability improvement (R-Rs) on O, 7C and TG components
(O : continuous shipping model, + : discrete shipping model)
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reliability improvement and setup cost reduction
each, given the other fixed, on lot size @, total
cost TC and its components. These results, illus-
trated graphically in [Figure 3] and [Figure 4]
using the same data set, can also be considered
those of the sensitivity analyses for the partial
integration models with only one investment

option.

First, for the effect of process reliability im-

TPC ($/year)

(©)
3,000,000

2,000,000

1,000,000

provement (R-Rp) given a fixed current setup
cost (S =5Sy=2,000 and thus TUC =0 in [Figure
3](f)), we can discover an interesting fact that
the lot size @ (ie, @S, R)) in [Figure 31(a) de-
creases in & (or R-Rp) in continuous shipping,
while it stays the same in R in discrete shipping,
as analytically shown in Proposition 1(b—c) and
3(b-c), respectively (see also those three col-
umns with the current setup (Sp) in <Table 1>).

(@) @ (unit/cycle) (b) TC ($/year)

2,000 3,045,000
s S
= 1,500 T 3,042,000 q
< 2
3 Y
2 1,000 L 3,039,000
~
500 3,036,000
0 800 1600 0 800 1600
§,-S §,-S
TPC ($/year) (d) TIC ($/year) (e) TLC ($/vear)
45,000 300,000
T 35,000 T 200,000
] v
2 >
) )
g 25,000 E 100,000
15,000 0
0 800 160 0 800 1600 0 800 1600
§,-S 8,8 S-S
(f) TUC ($/year) (g) TRC ($/vear)
27,000 1,200,000
5 18,000 § 800,000
= 2
& )
& O
S 9,000 g 400,000
0 4 0 $060085003000003000a4
0 800 1600 0 800 1600
§,-8 §,-S

[Figure 4] The effect of setup cost reduction (Sp-S) on O, TC and TC components

(O : continuous shipping model, + : discrete shipping model)



This difference is attributed to their different in-
ventory behaviors shown in [Figure 1] and
[Figure 2]. Thus, a manager needs to carefully
choose the right inventory model by under-
standing the environment. Regarding total cost
and its components, however, in both shipping
cases, as the process reliability improvement
level of R—-Ry increases with an increase in TRC,
other cost components such as TPC, TIC and
TLC decrease (see [Figure 3l{c-e, g)). In this
tradeoff relationship between TPC, TIC and
TLC together and TRC, the total cost TC is
strictly convex and thus has the unique optimal
solution in the process reliability level of R (see
[Figure 3](bY). It should also be noted, however,
that the impact of process reliability investment
is less in continuous shipping than discrete
shipping. Consequently, a manager should fully
understand the tradeoff relationship given his or
her shipping environment to make an intelligent
investment decision on process reliability im-
provement.

Second, for the effect of setup cost reduction
(So-5) given a fixed current process reliability
level (R = K¢ =08 and thus TRC=0 in {Figure
4)(g)), we can find an interesting aspect that the
lot size (S, R) in [Figure 4](a) shows similar
behaviors in both shipping, different from the
case for the process reliability improvement.
That is, Q(S, K) decreases with a decrease in S
(or an increase in S;=S) in both shipping, as also
analytically shown in Proposition 1(b-c¢) and
3(b—¢). Also, total cost and its components show
similar behaviors in both shipping, although
again different from the effect of process reli-
ahility improvement. In detail, as the level of set-
up cost reduction (So-S) increases with an in-
crease in TUC, only TIC decreases, while both
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TPC and TLC stay the same (see [Figure 4]
{c-1)). In this tradeoff relationship between TIC
and TUC, the total cost TC is strictly convex
with the unique optimal solution in the setup cost
of S (see [Figure 4](b)). It should also be noted,

however, that the continuous shipping environ-

ment requires a smaller lot size with more setup
cost reduction than the discrete shipping. Thus,
it is important for a manager to be aware of his

or her shipping environment.

5. Concluding Remarks

This study has investigated the problem of
making a manufacturer's cost-minimizing deci-
sion of determining the optimal production lot
size and investment levels of setup cost reduction
and process reliability improvement, for a stable
and non-deteriorating imperfect production
process. We examined a previously untapped
discrete shipping environment in a dyadic supply
chain as well as continuous shipping. We devel-
oped optimal solution approaches based on non-
linear programming and differential calculus.
The results showed an importance of jointly
considering both setup cost reduction and proc-
ess reliahility improvement investment decisions
for an integrated lean six sigma practice. Moreo-
ver, the different behaviors of key decision vari-
ables in different shipping environments called
for a manager's careful attention in making in-
telligent decisions on lot sizing and setup cost
reduction and process reliability improvement
investment.

In sum, this study is significant in that it not
only develops a practical model of jointly de-
termining lot size and investment levels for an

important lean six sigma practice, but also ex-



24 A - e

amines a previously unexplored discrete shipping
environment in dyadic supplier-buyer supply
chains or two-stage production and inventory
systems as well as a continuous shipping context
in extended EOQ or EPQ models with imperfect
production processes.

Despite its significance in both practice and
academia, however, there are some limitations in
this study, which deserve further investigation
through future research in richer environment.
First, it may be desirable to incorporate other
important factors such as defect inspection and
disposition options including rework and salvage
to a second market (e.g., by extending Yoo [44]).
Second, related to setup reduction, it may be in-
teresting to further explore the issues of setup
time reduction, effective capacity, and flexibility
{e.g., by extending Vérds [40]). Third, it may be
also desirable to examine interactions among
those mentioned variables with a variable de-
mand rate in a more complex supply chain con-
text (e.g., by extending Lee et al. [22] ; Kim and
Lee {15]). Finally, it will be interesting to treat
the production rate as a variable by incorporating
the concept of takt time along with cycle time
in a lean/JIT context [10, 36, 41] in a supply chain

environment with discrete shipping.
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(Appendix)

A. Proof of Proposition 1

In part (a), for TC to be strictly convex to have
a unique global minimum, its extremum con-
ditions should be satisfied, i.e., TC;= 0 for j for
the first-order necessary conditions (FONC) and
the principal minors of the Hessian |H| = : |Hj|
> 0 for i, where |H| = |TC”l for j, k for the sec-
ond-order sufficient conditions (SOSC) [6]. From
(1), FONC :

sd +£cﬁ(R_2_2R 1]1

d 5 7R, (A1)
TC'S:j——oiaS'("”)’ and (A2)
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Due to the mathematical difficulty of proving
[l > 0 using differential calculus and algebra,

we develop a nonlinear programming model be~

low for its proof.
Min |Hsl (A4)
S.t.
S<Sanddr <R <R <1, in (2
R S Qacl dimr 6 0c>0
p>1
The solution of (A4) using a nonlinear pro-
gramming problem solver LINGO yields that |Hsl
= (), thereby satisfying [Hs| > 0, which supports
the existence of only one global optimal solution
of T, S, R) in (1) without local optima, given
the constraints in (2). This proves part (a). From
(A1), we obtain (3). By substituting (3) into the
total inventory costs (TTC) in (1), we obtain (4).
Then, substituting (4) into (1) yields (5). This
proves part (b). Differentiating (3-4) with re-
spect to S and R with simple algebra proves part
(c). Now differentiating (5) with respect to S

gives

2icd®(R*/d —2R/r+1/7)
RS

- cia§ ™) (A5)

TC's (S,R) = — \/

Solving (A5) =0 for S vields (6). Substituting
(6) into (3) vields (7). This proves part (d). And
differentiating (6~7) with respect to R with
simple algebra proves part (e), so we omit the
details. Thus, the proof is complete. O

B. Proof of Proposition 3

From (9), FONC :
. __ Sd  icd -
o= RO®  2Rr (B1)
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| 9 po? o from (B1-B3) with p > 1.
H,|=TC" gy TC"' s ~TC" s This proves part (a). From (Bl), we obtain
) , (11). By substituting (11) into the total inventory
(ZSd]OTGH)IaS*"”) [ d ] _Gotbd costs (TIC) in (9), we obtain (12). Then, sub-
RO’ RQ* R ’ ' ’
stituting (12) into (9) yields (13). This proves
part (b). Differentiating (11-12) with respect to

S and R proves part (¢). Now by differentiating

from (B2), and

T 11 1" 1" 1w 2 "
IH3 | =TC 9o TC 55 TC" g =TC" g TC" " ~TC"'s5 (13) with respect to S, we get

TC" 4" +2TC" 4 TC" 5 TC"' g, od’

TC' (S, R) = | —— —ciaS™ ")
[{(C+1)d+s—d+LdQJ_+p(p Dimpe |22 D4 s 2R°Sr B
- RO' By solving (B4) =0 for S, we obtain (14).
[ d ][ sd_icd ) 25d( d Substituting (14) into (11) yields (15). This
RO R'Q® 2R ) RQ'\ RQ proves part (d). And differentiating (14-15) with

[ i icd )({ d ][ d J respect to R proves part (e). Thus, the proof is

RQ* 2R )\ RO\ RO complete. O



