• Title/Summary/Keyword: Process heat

Search Result 5,861, Processing Time 0.03 seconds

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

A study on Improvement of Workpiece Deformation In High Frequency Heat Treatment (고주파 열처리에서 공작물 변형 개선에 관한 연구)

  • Hong, Sung-Oh;Kim, Hong-Bae;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • Base and saddle feed drive system in machine tool puts in operation for Improvement of life and endure by high frequency heat treatment. In this time, work requirement of establishment to gets by repeat experimentation. In this paper, using the finite elementary method, we predict and revision processing, and gets minimizing of deformation and reduce the progress of Grinding works. Moreover, having high frequency heat treatment, the maximum deformation genesis m the middle parts without slideway length. Take deformation Into finite element program (ANSYS) of taper process in roughing process, after having high frequency heat treatment, existed quantity of deformation can be reduced down to 80 percents.

  • PDF

Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating (세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향)

  • Lee, J.I.;Ur, S.C.;Lee, Y.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Comparative Investigation of Convective Heat Transfer Coefficients for Analyzing Compressed Hydrogen Fueling Process (압축 수소 충전 공정 해석을 위한 대류 열전달 계수 비교 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.123-133
    • /
    • 2023
  • Commercial hydrogen fuel cell vehicles are charged by compressing gaseous hydrogen to high pressure and storing it in a storage tank in the vehicle. This process causes the temperature of the gas to rise, to ensure the safety to storage tanks, the temperature is limited. Therefore, a heat transfer model is needed to explain this temperature rise. The heat transfer model includes the convective heat transfer phenomenon, and accurate estimation is required. In this study, the convective heat transfer coefficient in the hydrogen fueling process was calculated and compared using various correlation equations considering physical phenomena. The hydrogen fueling process was classified into the fueling line from the dispenser to the tank inlet and the storage tank in the vehicle, and the convective heat transfer coefficients were estimated according to process parameters such as mass flow rate, diameter, temperature and pressure. As a result, in the case of the inside of the filling line, the convective heat transfer coefficient was about 1000 times larger than that of the inside of the storage tank, and in the case of the outside of the filling line, the convective heat transfer coefficient was about 3 times larger than that of the outside of the storage tank. Finally, as a result of a comprehensive analysis of convective heat transfer coefficients in each process, it was found that outside the storage tank was lowest in the entire hydrogen fueling process, thus dominated the heat transfer phenomenon.

Controlling the secondary phase of BSCCO 2223 tapes by thermal slide heat treatment(TSHT)

  • Park, Sung-Chang;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.40-43
    • /
    • 2003
  • The phase transformation, variation of secondary phase, and critical current density $(J_c) for (Bi,Pb)_2Sr_2Ca_2Cu_3O_10 (2223)$ tapes have been studied through the thermal slide heat treatment (TSHT) process. This process consists of a multiple variations of oxygen partial pressures and temperatures at the initial heat treatment During the initial heat treatment some secondary phase such as $(Ca,Sr)_2CuO_3(2/1 AEC), (Ca,Sr)_{14}Cu_{24}O_{41} (14/24 AEC), and (Bi,Pb)_2Sr_2CuO_y$(2201, amorphous phase) farm in Bi-2223 tapes, especially at the 2223 grain boundaries. These secondary phases are detrimental to the phase transformation and final properties. In order to control the secondary phase in Bi-2223 tapes the amount and size of secondary phases among the TSHT process were observed. The results indicate that the amount and particle size of AEC particles were smaller when the TSHT process was used than when the normal process at the initial heat treatment was used which results in the improved $J_c$ properties after the final process.

Analysis of the Carburizing Heat Treatment Process for SNCM Alloy Steel Using the Finite Element Method (유한요소법을 이용한 SNCM 합금강의 침탄열처리 공정 해석)

  • Choi S.C.;Lee D.J.;Kim H.Y.;Kim H.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1284-1292
    • /
    • 2006
  • Heat treatment is a controlled heating and cooling process to improve the physical and/or mechanical properties of metal products without changing their shapes. Today finite element method is widely used to simulate lots of manufacturing processes including heat treatment and surface hardening processes, which aims to reduce the number of time- and cost-consuming experimental tryouts. In this study we tried, using this method, to simulate the full carburizing process that consists of carburizing, diffusing and quenching, and to predict the distribution of carbon contents, phase fraction and hardness, thermal deformation and other mechanical characteristics as the results. In the finite element analysis deformation, heat transfer, phase transformation and diffusion effects are taken into consideration. The carburizing process of a lock gear, a part of the car seat recliner, that is manufactured by the fine blanking process is adopted as the analysis model. The numerical results are discussed and partly compared with experimental data. And a combination of process parameters that is expected to give the highest surface hardness is proposed on the basis of this discussion.

Numerical Study on the Two-Dimensional Heat Flow in High-Power Density Welding Process (고에너지밀도용접 과정에서의 2차원 열유동에 대한 수치해석적 연구)

  • Park, Kun-Joong;Jang, Kyung-Chun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1166-1174
    • /
    • 2000
  • This work presents a two-dimensional quasi-steady state model to study the fluid flow and heat transfer in high-power density welding process of thin AISI-304 stainless steel plates. The enthalpy method and the finite volume method were used for a numerical analysis of the mushy region phase change as well as the heat flow at the weld pool and the heat-affected zone. The results show that the mushy region distributed around the weld pool becomes wider downstream and the surface heat losses by convection and radiation can be significant factors in welding process especially when a welding speed is relatively low.