• Title/Summary/Keyword: Process heat

Search Result 5,853, Processing Time 0.031 seconds

Improvement of Compressor EER Based on Shape of Gap Flow Passage (압축기 갭 유로 형상에 따른 압축기 EER 향상)

  • Han, Sang-Hyeok;Lee, Young Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.63-69
    • /
    • 2022
  • Compressor efficiency must be improved to reduce refrigerator power consumption. In this study, the heat dissipation rate through the compressor housing is increased via gap flow passages between the compressor body and housing. Four types of gap flow passages are considered for achieving the maximum heat-dissipation rate. In addition, thermal analysis is performed to examine the effect of increased heat dissipation rate on the energy efficiency ratio (EER). The results show that the heat dissipation rate, compressor superheat, and compressor EER increased by up to approximately 52%, 3 ℃, and approximately 1%, respectively.

Characteristics of Bi2212 Round-wire Depending on Heat Treatment Condition (열처리조건에 따른 Bi-2212 라운드형 선재의 특성)

  • Lee Nam-Il;Jang Gun-Eik;Oh Sang-Su;Ha Dong-Woo;Kim Sang-Cheol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.1-4
    • /
    • 2006
  • The characteristics of Bi2212 round wire was systematically studied depending on different heat treatment conditions. Initial wire was drawn after routine PIT (Powder In Tube) process. The wire was divided into 3 pieces with 10 cm in length and 2.5 mm in diameter. 3 wires were pre-heat treated separately by different heat treatment schedules, heated in air and nitrogen atmosphere and centrifugally melted. Pre-heated wires were annealed at $845^{\circ}C$ for 40 hours in oxygen atmosphere. SEM results indicate that all pre-heated wires showed highly oriented microstructure. However the wire by centrifugally melted process showed higher density and better electric properties as compared with 2 other wires pre-heated in air and nitrogen atmosphere. The critical current of a centrifugally melted wire was about 18 A in 77 K.

Residual Stress Analysis of Hot Rolled Strip (열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재권;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.172-175
    • /
    • 2003
  • Run-Out-Table is the region between EDT and CT. Hot killed strip is cooled by air and water in ROT. In this procedure, phase transformation and shape deformation occur due to temperature drop. Because of un-ideal cooling condition, deformation of strip and non-uniform phase distribution come into existence. This phenomenon affects the strip property and lead th the existence of residual stress. And it exerts effects on the Coiling process, Coil Cooling process, and Un-coiling process. Through these process, the residual stresses of strip are more larger and unbalance of these stresses become more severe. Finite element (FE) based models for the analysises of non-steady state heat transfer and elastoplastic deformation are described in this investigation. The analysises of thermodynamics and phase transformation kinetics are suggested also. Using the ROT simulation result coiling process and coil cooling process simulations are carried out.

  • PDF

A Study on an Optimization of Welding Process Parameters by using an Analytic Solution for the Welding Angular Distortion (용접 각 변형량 해석해를 이용한 용접 공정변수 최적화에 관한 연구)

  • 이세환
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.42-48
    • /
    • 2003
  • Welding distortion is a current issue in many industrial parts, especially for heavy industry such as shipbuilding, plant industry. The welding process has many processing parameters influencing welding angular distortion such as heat input power, welding speed, gas flow rate, plate thickness and the welded material properties, etc. In this work, the conventional local minimization concept was applied to find a set of optimum welding process parameters, consisted of welding speed, plate thickness and heat input, for a minimum angular distortion. An analytic solution for welding angular distortion, which is based on laminated plate theory, was also applied to investigate and optimize the welding process parameters. The optimized process parameters and the angular distortion for various parametric conditions could be easily found by using the local minimum concept.

A Study On the $Conform^{TM}$ Process of Al 1100 Alloy (Al 1100 합금의 $Conform^{TM}$ 공정에 관한 연구)

  • Kim, S.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.329-332
    • /
    • 2006
  • $Conform^{TM}$, a continuous extrusion forming process can produce a variety of very long extruded products such as aluminum alloyed wires, strips and profiles, hollow sectioned tubes, coated wires used in the current forming industry. This process has some advantages like as superiority of pre-heating free, availability of high extrusion ratio and continuous forming without stroke limit. But it is still difficult to analyze the realistic model of the process. In this study the analysis using two-dimensional model of $Conform^{TM}$ process together with several parametric investigations on the heat transfer are carried out by FEA code DEFORM $^{TM}2D$. In spite of simple model the results of analysis shows a good guidance to design the real process.

  • PDF

An experimental study on the in-process measurement of case depth for LASER surface hardening process (레이저 표면경화 공정에서 경화층깊이의 실시간 측정을 위한 실험적 연구)

  • Woo, H.G.;Park, Y.J.;Han, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • This paper proposes a monitoring method for nondestructive and in-process measurement of the case depth in LASER surface heat treatment process. The method is essentially an eddy-current method, and measures sensing coil's electrical impedance which varies with the changes of the material microstructure due to hardening. To investigate te validity of the proposed method a series of experiments were performed for various hardning depths. The results show that the relationship between the eddy- current sensor output and the changes in case depth is almost linear. This indicates that the eddy-current measuring method can be used as one of the possible monitoring method for mesauring the hardened depth in LASER heat treatment processes.

  • PDF

The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet (보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향)

  • Kwon, K.Y.;Sin, B.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.

Evaluation of surface roughness of heat-polymerized denture base resin according to the polishing step (연마 과정에 따른 열중합 의치상 레진의 표면 거칠기 평가)

  • Hwang, Seong-Sig;Im, Yong-Woon;Kim, Si-Chul;Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.205-212
    • /
    • 2015
  • Purpose: The objective of this study was to compare the surface roughness according to polishing process in conventional laboratory techniques used for polishing three different acrylic denture base resins. Materials and methods: Specimen preparation and surface polishing procedures were conducted to manufacturer's recommendation with three heat-polymerized denture base resins. Surface roughness and gloss were measured by a contact type tester and a LED gloss checker using thickness 2 mm and diameter 10 mm. There were five specimens for each acrylic resin material and polishing procedures. Mean average surface roughness (Ra) values of each specimen group were analyzed using a one-way ANOVA analysis of variance and Scheffe's post hoc test. Surfaces after surface roughness and gloss testing according to each polishing process were evaluated under a stereoscopic microscope. Results: The highest mean average surface roughness was measured($Ra=2.43{\pm}0.47$) for surfaces finished with a denture tungsten carbide bur in Triplex. The lowest surface roughness values ($Ra=0.11{\pm}0.07$) were determined in Vertex polished with a lathe. In addition, all materials revealed that surface roughness determined highly in HP1 and HP2 than other procedures. All correlation between surface roughness and gloss showed highly with three heat-polymerized resins. Specially, topmost correlation revealed than other material in Triplex. Significant differences in mean average surface roughness were found between polishing process used high speed lathe and low speed hand-piece. Conclusion: Laboratory polishing used to high speed was found to produce the smoothest surface of heat-polymerized denture base acrylic resin. Therefore, we recommended that high polishing process need to get smooth surface.

The Research on the Differences & Changes in Hair Color Before v.s. After shampoo and Dry on Different Heat Processes When Acid Hair Color Dyeing (산성컬러 염색제로 모발 염색 시 열처리에 따른 세척 전과 세척 건조 후 색차 및 색변화에 관한 연구)

  • An, Hyeon-Kyeong
    • Journal of Fashion Business
    • /
    • v.16 no.1
    • /
    • pp.69-82
    • /
    • 2012
  • This thesis aimed to reduce the differences of hair color when hair coloring, so it researched the differences & changes in hair color before shampoo v.s. after shampoo and dry on different heat processes when acid hair color dyeing. Five hair color dyes (Y, R, B, G, Br) manufactured by two different corporations were used. The acid hair color dyes were tinted on black and bleached hair pieces subjected to 3 different heat process; 1. Normal Temperature($25^{\circ}C$, 30min.) / 2. Heating($40^{\circ}C$, 15min.)+Normal Temperature($25^{\circ}C$, 15min.) / 3. Heating($40^{\circ}C$, 30min.). Color numbers were divided by NCS value, chroma, and hue. Statistical averages were derived and t-test was conducted using SPSS V12. Hair color differences and changes were drawn on an NCS chart using Photo Shop PS. The conclu is; If acid hair colorings are separated by a heating process, hair value & chroma change before shampoo vs. after shampoo & dry regardless of the color of hair and the heat process. Hue is not changed or shifted counter clockwise NCS color circle, but some exceptions, and it's the same when the total heat process results are combined. Black hair's value shifted downward and chroma left, and hue stayed either neutral or one color or it shifted counter clockwise on NCS color circle. Bleached hair's value shifted upward and chroma right, and hue stayed one color or shifted counter clockwise, but some exceptions. And it can be shown on NCS chart.

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF