• Title/Summary/Keyword: Process heat

Search Result 5,853, Processing Time 0.032 seconds

Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux (일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

Heat transfer and pressure drop characteristics during cooling process of supercritical $CO_2$ in a horizontal tube (수평관내 이산화탄소의 냉각열전달과 압력강하 특성에 관한 연구)

  • Son, C.H.;Kim, J.R.;Roh, G.S.;Ku, H.G.;Park, G.W.;Oh, H.K.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.244-245
    • /
    • 2005
  • This paper presents the heat transfer and pressure drop characteristics during cooling process of carbon dioxide in a horizontal tube. The test section is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a stainless steel tube with the inner diameter of 7.75 [mm], the outer 2 diameter of 9.53 [mm] and length of 6000 [mm]. The refrigerant mass fluxes were $200{\sim}400$ [kg/$m^2s$] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows The heat transfer coefficient of supercritical $CO_2$ increases in decrease of the gas cooler pressure. And the heat transfer coefficient increases with respect to the increase of the refrigerant mass flux. Among some correlations proposed in a transcritical region, Bringer-Smith's correlation has some analogy with experimental results. The pressure drop decreases in increase of the gas cooler pressure and increases with respect to increase the refrigerant mass flux.

  • PDF

A Study on the Shape Design of a Radiator Panel for Effective Heat Release (효율적인 열 방출을 하기 위한 방열판의 형상 설계에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.25-30
    • /
    • 2016
  • This study investigates the heat transfer due to a change in the shape of a radiator panel inside a computer. As with models of radiator panels, models have the same surface areas. As the gap between heat transfer surfaces in model 1 becomes wider than those in model 2, the heat transfer at model 1 becomes smoother than that of model 2. By comparing the cooling processes between models 1 and 2 with respect to natural convection, a maximum temperature of $47.432^{\circ}C$ at model 1 becomes lower than that of model 2, at $49.821^{\circ}C$. Within the radiator panel, model 1 has been shown to be more effective than model 2. Accordingly, these results can be effectively applied to the shape design of radiator panels to imbue them with smoother and faster heat transfer through the finite element method.

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

A study on the heat treatment processing of 7050 aluminum alloy (7050Al 합금의 열처리공정 개발에 관한 연구)

  • Lee, H.S.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.139-146
    • /
    • 1996
  • The aero-industry is union industry which includes a research development type, a knowledge accumulation type and a developed country type. The aero-industry of Korea is in semi-developed type stage but departed later than that of other country such as Taiwan, Indonesia etc. Therefore, the necessity of domestic airplane material is required. This study on 7050Al extruded alloy aims to suggest an adequate heat treatment conditions of T73, T74 and T76. The results of this study show that; 1. The optimum conditions of T7x heat treatment in extruded 7050Al alloy show this; $$T73:121^{\circ}C{\times}7hr+177^{\circ}C{\times}14hr$$. $$T74:121^{\circ}C{\times}7hr+177^{\circ}C{\times}10hr$$. $$T76:121^{\circ}C{\times}7hr+163^{\circ}C{\times}21hr$$. 2. The 2nd step aging heat treatment such as T73, T74 and T76 etc. is efective in 7050Al alloy but the variation otf microstructure and mechanical property with dispersive inclusions produced for extrusion process causes some troubles. Accordingly, in order to produce a good 7050Al alloy, a careful attention is needed in manufacturing process.

  • PDF

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

Transient cooling experiments with a cooper block in a subcooled flow boiling system (과냉비등류에 있어서 동블록을 이용한 과도적 냉각실험)

  • 정대인;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 1987
  • When the wall temperature is very high, a stable vapor film covers the heat transfer surface. The vapor film creates a strong thermal resistance when heat is transferred to the liquid though it. This phenomenon, called "film boiling" is very important in the heat treatment of metals, the design of cryogenic heat exchangers, and the emergency cooling of nuclear reactors. In the practical engineering problems of the transient cooling process of a high temperature wall, the wall temperature history, the variation of the heat transfer coefficients, and the wall superheat at the rewetting points, are the main areas of concern. These three areas are influenced in a complex fashion such factors as the initial wall temperature, the physical properties of both the wall and the coolant, the fluid temperature, and the flow state. Therefore many kinds of specialized experiments are necessary in the creation of precise thermal design. The object of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The block was 240 mm high and 79 mm O.D.. The coolant flowed throuogh the center of a 10 mm diameter channel in the copper block. In the copper block, three sheathed thermocouples were placed in a line perpendicular to the flow. These thermocouples were used to take measurements of the temperature histories of the copper block.

  • PDF

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Study on Simulation of Water Cooling Heat Exchanger for Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 열교환기 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.201-207
    • /
    • 2012
  • This study was carried out to improve the design of heat exchanger for small marine diesel engine. As air pollutants emitted from small marine diesel engine become international problem, IMO(International Marine Organization) tried to establish severe regulations for NOx reduction. The formation of NOx is affected by cooling system, for instance, such as intercooler, heat exchanger, exhaust manifold, and therefore cooling systems are one of essential parts for design of small marine diesel engine. In this study, heat exchanger for small marine diesel engine was modeled and simulated using CATIA V5R19 and ANSYS FLUENT V.13. Thermal flow simulation for heat exchanger was performed to find the optimal design. As the results, maximum velocity of engine coolant in shell inside was 9.1m/s and it was confirmed that outlet temperature and temperature drop for engine coolant could be calculated by simulating proportional relations of temperature between engine coolant and sea water.