• Title/Summary/Keyword: Process data

Search Result 23,948, Processing Time 0.05 seconds

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Comparison between Planned and Actual Data of Block Assembly Process using Process Mining in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 조립 프로세스의 계획 및 실적 비교 분석)

  • Lee, Dongha;Park, Jae Hun;Bae, Hyerim
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.145-167
    • /
    • 2013
  • This paper proposes a method to compare planned processes with actual processes of bock assembly operations in shipbuilding industry. Process models can be discovered using the process mining techniques both for planned and actual log data. The comparison between planned and actual process is focused in this paper. The analysis procedure consists of five steps : 1) data pre-processing, 2) definition of analysis level, 3) clustering of assembly bocks, 4) discovery of process model per cluster, and 5) comparison between planned and actual processes per cluster. In step 5, it is proposed to compare those processes by the several perspectives such as process model, task, process instance and fitness. For each perspective, we also defined comparison factors. Especially, in the fitness perspective, cross fitness is proposed and analyzed by the quantity of fitness between the discovered process model by own data and the other data(for example, the fitness of planned model to actual data, and the fitness of actual model to planned data). The effectiveness of the proposed methods was verified in a case study using planned data of block assembly planning system (BAPS) and actual data generated from block assembly monitoring system (BAMS) of a top ranked shipbuilding company in Korea.

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

A Tool to Support Personal Software Process (개인 소프트웨어 프로세스 지원을 위한 도구)

  • Shin, Hyun-Il;Jung, Kyoung-Hak;Song, Il-Sun;Choi, Ho-Jin;Baik, Jong-Moon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.752-762
    • /
    • 2007
  • The PSP (Personal Software Process) is developed to help developers make high-quality products through improving their personal process. With consistent measurement and analysis activity that the PSP suggests, developers can identify process deficiencies and make reliable estimates on effort and quality. However, due to the high-overhead and context-switching problem of manual data recording, developers have difficulties in collecting reliable data, which can lead wrong analysis results. On the other hand, the paper-based process guides of the PSP are inconvenient to navigate its process information and difficult to attach additional information. In this paper, we introduce a PSP supporting tool developed to handle these problems. The tool provides automated data collection facilities to help acquire reliable data, an EPG (Electronic Process Guide) for the PSP to provide easy access and navigation of the process information, and an experience repository to store development experience as additional information about the process.

Note on the Transformed Geometric Poisson Processes

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.135-141
    • /
    • 1997
  • In this paper, it is investigated the properties of the transformed geometric Poisson process when the intensity function of the process is a distribution of the continuous random variable. If the intensity function of the transformed geometric Poisson process is a Pareto distribution then the transformed geometric Poisson process is a strongly P-process.

  • PDF

A Process Mining using Association Rule and Sequence Pattern (연관규칙과 순차패턴을 이용한 프로세스 마이닝)

  • Chung, So-Young;Kwon, Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

A Study on the Monitoring of Reject Rate in High Yield Process

  • Nam, Ho-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.773-782
    • /
    • 2007
  • The statistical process control charts are very extensively used for monitoring of process mean, deviation, defect rate or reject rate. In this paper we consider a control chart to monitor the process reject rate in the high yield process, which is based on the observed cumulative probability of the number of items inspected until r defective items are observed. We first propose selection of the optimal value of r in the CPC-r charts, and also consider the usefulness of the chart in high yield process such as semiconductor or TFT-LCD manufacturing process.

  • PDF

Multivariate Control Charts for Autocorrelated Process

  • Cho, Gyo-Young;Park, Mi-Ra
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2003
  • In this paper, we propose Shewhart control chart and EWMA control chart using the autocorrelated data which are common in chemical and process industries and lead to increase the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and simulation is conducted to investigate the performances of the proposed control charts.

  • PDF

Defect Type Prediction Method in Manufacturing Process Using Data Mining Technique (데이터마이닝 기법을 이용한 제조 공정내의 불량항목별 예측방법)

  • Byeon Sung-Kyu;Kang Chang-Wook;Sim Seong-Bo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Data mining technique is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules. This paper uses a data mining technique for the prediction of defect types in manufacturing Process. The Purpose of this Paper is to model the recognition of defect type Patterns and Prediction of each defect type before it occurs in manufacturing process. The proposed model consists of data handling, defect type analysis, and defect type prediction stages. The performance measurement shows that it is higher in prediction accuracy than logistic regression model.

A Modeling Approach to Integrate Business Processes and Data Requirements (업무 프로세스와 데이터 요구사항의 통합 모델링)

  • Jang, Mu-Gyeong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.329-338
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to design processes to support uncertainties from internal or external environments. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.

  • PDF