• 제목/요약/키워드: Process capability index

검색결과 177건 처리시간 0.032초

경제적인 품질보증수준확보를 위한 공정능력지수의 최적화에 관한 연구 (Optimization of Process Capability Index for Economic Coalify Assurance Level)

  • 송서일
    • 산업경영시스템학회지
    • /
    • 제11권18호
    • /
    • pp.71-80
    • /
    • 1988
  • Process capability implies the qualitative capability of a process, and it is necessary to specify the process capability by quantification and to evaluate the level with the specified standardizaion. But the process capability index is currently used to evaluate the performance of quality control activity. without considering the characteristics of process structure or the economy of management. Here the researcher would like to redefine process capability and emphasize its index may be used as the measure of managerial assessment and the objective of process quality control in full consideration of the economic aspects of process characteristics. Too little or too much process capability causes a loss of or excess. The proper economic level of process capability varies to each process. The procedure of taking the optimum process capability index is derived from the expected profit function, whereas each method is studied in cases of normal process with one-sided specification and two-sided specification. In addition, the process capability index is presented as a method of quality assurance. And an example is exhibited on wrapping process of 'A' company. The results of this study are summarized at follows. First, though the norminalization of the process capability index is possible by the existing methods, the optimum process capability index can vary to the situation of each process. So, the optimum process capability index which is suggested in this dissertation should be used as the standard to assess process capability. Second, the process capability index can take its effect not just in indicating quality control or managerial records but also in the management of high qualify assurance.

  • PDF

정규분포 공정 가정하에서의 공정능력지수 $C_{pmk}$ 에 관한 효율적인 신뢰한계 (Better Confidence Limits for Process Capability Index $C_{pmk}$ under the assumption of Normal Process)

  • 조중재;박병선;박효일
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.229-241
    • /
    • 2004
  • Process capability index is used to determine whether a production process is capable of producing items within a specified tolerance. The index $C_{pmk}$ is the third generation process capability index. This index is more powerful than two useful indices $C_p$ and $C_{pk}$. Whether a process distribution is clearly normal or nonnormal, there may be some questions as to which any process index is valid or should even be calculated. As far as we know, yet there is no result for statistical inference with process capability index $C_{pmk}$. However, asymptotic method and bootstrap could be studied for good statistical inference. In this paper, we propose various bootstrap confidence limits for our process capability Index $C_{pmk}$. First, we derive bootstrap asymptotic distribution of plug-in estimator $C_{pmk}$ of our capability index $C_{pmk}$. And then we construct various bootstrap confidence limits of our capability index $C_{pmk}$ for more useful process capability analysis.

경제적 손실을 고려한 기대손실 능력지수의 개발 (Development of Expected Loss Capability Index Considering Economic Loss)

  • 김동혁;박형근;정영배
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.109-115
    • /
    • 2013
  • Process Capability Index (PCI) is useful Statistical Process Control (SPC) tool that is measure of process diagnostic and assessment tools widely use in industrial field. It has advantage of easy to calculate and easy to use in the field. $C_p$ and $C_{pk}$ are traditional PCIs. These are only considers of process variation. These are not given information about the characteristic value does not match the target value of the process. Studies of this process capability index by many scholars actively for supplement of its disadvantage. These studies to evaluate the capability of situation of various field has presented a new process capability index. $C_{pm}$ is considers both the process variation and the process deviation from target value. And $C_{pm}{^+}$ is considers economic loss for the process deviation from target value. In this paper development of new process capability index that is Taguchi's quadratic loss function by applying the expected loss. And check the correlation between existing traditional process capability index ($C_{pk}$) and new one. Finally, we propose the criteria for classification about developed process capability index.

공정능력지수 산정에 있어 고려사항 (Issues on the Calculation of the Process Capability Index)

  • 이도경
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.127-132
    • /
    • 2014
  • This study is concerned with process capability index in single process. We enumerated issues on the calculation of process capability index and described the effects of these issues. We explained the development process and the reason of the representative existing process capability indices. We investigated whether the indices agree with the concept of process capability and drew the problems from those results. In addition, we proposed alternative and direction to seize the process capability necessary to the field.

손실함수를 이용한 다변량 공정능력지수에 관한 연구 (A Study on Multivriate Process Capability Index using Quality Loss Function)

  • 문혜진;정영배
    • 산업경영시스템학회지
    • /
    • 제25권2호
    • /
    • pp.1-10
    • /
    • 2002
  • Process capability indices are widely used in industries and quality assurance system. In past years, process capability analysis have been used to characterize process performance on the basis of univariate quality characteristics. However, in actual manufacturing industrial, statistical process control (SPC) often entails characterizing or assessing processes or products based on more than one engineering specification or quality characteristic. Therefore, the analysis have to be required a multivariate statistical technique. This paper introduces to multivariate capability indices and then selects a multivariate process capability index incorporated both the process variation and the process deviation from target among these indices under the multivariate normal distribution. We propose a new multivariate capability index $MC_{pm}^+$ using quality loss function instead of the process variation and this index is compared with the proposed indices when quality characteristics are independent and dependent of each other.

품질안전개선을 위한 공정능력지수의 연구 (The study on the Process Capability Index for Continuously Improvement Quality Safety)

  • 양광모;오선일;강경식
    • 대한안전경영과학회지
    • /
    • 제8권3호
    • /
    • pp.11-25
    • /
    • 2006
  • It is necessary to deal with the process capability index carefully because it has been developed with certain assumptions. Companies make a decision on processes through the results obtained by using and treating data extracted from the processes. However if they have incorrect or wrong results, they cannot lead to proper outputs but also bring to loss of the competition in quality. Therefore, this study will show a method to analysis Cp (process capability ; CP) and an idea of mass-production on Pp (process performance ; PP) based on the Sigma Estimate which is one of the uncertainty in the process capability index and makes a lot of error. To apply this method, it is essential to understand and to analyze the processes exactly. Especially, it is required to establish the more accurate process capability index that can quickly and properly respond to changes on processes to recognize the small changes on the process which lies in specification in mass production system that the continual monitoring of quality managers is required.

An Interpretation of Process Capability Index and Process Performance Index

  • 남호수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.285-294
    • /
    • 2002
  • The control chart is widely used tool for monitoring of the process. This paper deals with an interpretation of the process capability index(PCI) and process performance index(PPI) when the control chart is used for monitoring of the process. The main difference between the PCI and PPI is how we did estimate the process deviation. The PCI uses the within process variation and the PPI uses the total process variation, which is conceptually defined as sum of between process variation and within process variation. Easy interpretations of the PCI and PPI for field engineers are described. And some new approaches to interpretation of the process capability and performance index may be useful in early stabilization of new process.

  • PDF

역정규 손실함수를 이용한 기대손실 능력지수의 개발 (Development of Expected Loss Capability Index Using Reflected Normal Loss Function)

  • 전동진;정영배
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.41-49
    • /
    • 2017
  • Process quality control, which prevents problems and risks that may occur in products and processes, has been recognized as an important issue, and SPC techniques have been used for this purpose. Process Capability Index (PCI) is useful Statistical Process Control (SPC) tool that is measure of process diagnostic and assessment tools widely use in industrial field. It has advantage of easy to calculate and easy to use in the field. $C_p$ and $C_{pk}$ are traditional PCIs. These traditional $C_p$ and $C_{pk}$ were used only as a measure of process capability, taking into account the quality variance or the bias of the process mean. These are not given information about the characteristic value does not match the target value of the process and this has the disadvantage that it is difficult to assess the economic losses that may arise in the enterprise. Studies of this process capability index by many scholars actively for supplement of its disadvantage. These studies to evaluate the capability of situation of various field has presented a new process capability index. $C_{pm}$ is considers both the process variation and the process deviation from target value. And $C_{pm}{^+}$ is considers economic loss for the process deviation from target value. In this paper we developed an improved Expected Loss Capability Index using Reflected Normal Loss Function of Spring. This has the advantage that it is easy to realistically reflect the loss when the specification is asymmetric around the target value. And check the correlation between existing traditional process capability index ($C_{pk}$) and new one. Finally, we propose the criteria for classification about developed process capability index.

Proposal of a New Process Capability Index Based on Dollar Loss by Defects

  • Park, Seung-Wook
    • International Journal of Quality Innovation
    • /
    • 제9권1호
    • /
    • pp.41-54
    • /
    • 2008
  • The process capability indices have been widely used to measure process capability and performance. In this paper, we proposed a new process capability index which is based on an actual dollar loss by defects. The new index is similar to the Taguchi's loss function and fully incorporates the distribution of quality attribute in a process. The strength of the index is to apply itself to non-normal or asymmetric distributions. Numerical examples were presented to show superiority of the new index against $C_p$, $C_{pk}$, and $C_{pm}$ which are the most widely used process capability indices.

다수 위치 측정에서 최소 기준에 의한 공정능력지수 (The Process Capability Index of Minimum Base on the Multiple Measuring Locations)

  • 이도경
    • 산업경영시스템학회지
    • /
    • 제34권4호
    • /
    • pp.114-119
    • /
    • 2011
  • Process capability indices (PCls) have been widely used in manufacturing industries to provide a quantitative measure of process potential and performance. The previous studies have measured only one location on each part in the case of single variate. To calculate the reliable process capability, a couple of measuring locations on each part are required. In this paper, we propose a new system process capability index $SC_{pm}$ (m) which is the minimum value of the location PCls.