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Abstract

Process capability index is used to determine whether a production process is capable
of producing items within a specified tolerance. The index (¢ ok i1s the third generation
process capability index. This index is more powerful than two useful indices C, and
C , Whether a process distribution is clearly normal or nonnormal, there may be some
questions as to which any process index is valid or should even be calculated. As far
as we know, yet there is no result for statistical inference with process capability
index C o However, asymptotic method and bootstrap could be studied for good
statistical inference. In this paper, we propose various bootstrap confidence limits for
our process capability index (,,, First, we derive bootstrap asymptotic distribution of

plug-in estimator C,,, of our capability index C,, And then we construct various

bootstrap confidence limits of our capability index ¢ . f0r more useful process

capability analysis.
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1. Introduction

Process  capability indices, whose

purpose 1s to provide a numerical

measure on whether a production process
is capable of producing items satisfying
the quality requirements preset by the
substantial

designer, have received

attention in the quality control and

statistical literature. The three most

widely used capability indices are as

follows.
C. = _USL—LSL
4 6o

Cm = 65 EX-T)?

where [JSI, 1s the upper specification
limit and [.SI. is the lower specification
limit. Also, x is the process mean, ¢ is
the process statndard deviation, and 7 is
the target value.

While the index (C, reflects only the
magnitude of the process variation, the
index ¢ " takes into account the process
variation as well as the location of the
process mean relative to the specification
limits. Also, to obtain more sensitive

capability index than (¢, and C

om0

Pearn et al.(1992) introduced the third
process capability index ¢ ke 8S follows.

Comi = 36 E(X—T)°

d—lu—M
WV P+ (u— T)?

where two constants ¢ and M are
defined by d=(USL—LSL)/2 and
M= (USL+ LSL)/2, respectively.

In general, the calculation of wvarious
lower confidence limits assumes a
normally distributed process, and, as
Gunter(1989) has noted, many real world
processes are not normally distributed
and this departure from normality may
be hard to detect. This could potentially
affect both the estimates of the indices
and the lower confidence limits based on
these estimates. Efron(1979)

and developed the nonparametric, but

introduced

computer intensive, estimation method
called bootstrap. In particular, Efron and
Tibshirani(1986)

types of bootstrap confidence intervals:

further develop three
the standard bootstrap confidence interval
(SB), the percentile bootstrap confidence
interval (PB), and the biased-corrected
percentile bootstrap confidence interval
(BCPB). Franklin and Wasserman{1991)
presented an inital study of the properties
of these confidence

three  bootstrap

intervals for C, Also, Franklin and

Wasserman(1992) have studied bootstrap

lower confidence limits for capability

indices. However, there i1s no result on
statistical inference for the index C,,
because of computing complexity.

In this

confidence

paper, we study bootstrap

limits for our process
capability index C . First, we have

derived bootstrap asymptotic distribution
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for our capability index (¢ ok Having

provided the consistency of our bootstrap
for process capability index C,,,. Wwe

construct SIX bootstrap confidence

intervals  including three types of
bootstrap confidence intervals SB, PB,
and BCPB abovementioned. These results
will play an important role to study their

performances for our process index C,,,

under nonnormal distributions.

2. Bootstrapping our
process capability index

2.1 Bootstrap algorithm

In this
bootstrap

section, we Introduce the

algorithm for deriving
asymptotic distributions and confidence

limits with the bootstrap. Some process

capability indices(PCIs) are wused to
determine whether a production process
is capable of producing items within a

specified tolerance. They are considered
as a practical tool by several advocates
of statistical process control in
industry.

Suppose that a set of the independent
X,,X,,--,X, has a

common distribution fF(-) with process

random variables

mean y and process variance g2
We obtain the natural estimators of
C pout with the

follows.

plug-in principle as

Com = 35 S+(X-D:

_ _ d-1x-M
3V S+ ( X— T)?
where sample mean X and sample

variance  S? implies ?{:—]— }njl X, and
n =
S = 71——1— zan( X,— X)? respectively.
Putting mass 1/x at each of the points
X, Xy, -, X, Wwe get the
X3, X0, X
method is to

bootstrap

sample of size @ ,

The bootstrap
approximate the
KX, X,, X, F) under

distribution of

F by that of
X!, X5, XwF). A formal descrip-
tion of the bootstrap algorithm goes as
follows.

e Step 1 : Given yx,=(X,,X,, -, X,)
X’I,X;, ’X’:n

can be obtained with replacement,

the bootstrap sample

which 1s conditionally independent
with common distribution F,.
e Step 2 ' From the bootstrap sample

X, Xy, X7 compute the

bootstrap sample mean X* and
bootstrap sample variance S*? as
follows.
- Ly
X m zle”

S§*2 = ;]_—1 ZZI(X’;—;(_*)Z

e Step 3 Compute the bootstrap
plug-in  estimator of (C,, as
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follows; Lemma 1 Along almost all sample
oo i _ X x_ sequences given yx,=(X,,X,,,X,) as
ot 35 S*24+( X' —1)? m and 5 tend to oo, we obtain:
= A Vol X=X, §7 =) 2,
IV ST+ X 1)
2
< wfon (7, )
2.2 Bootstrap asymptotic My py— 0
distribution Proof Let F, be the empirical
. . X\ /X X )
Now we study the asymptotic distribution of (le)( 2)(X2n) Given
1 n

properties which are needed to construct
various bootstrap confidence intervals for
the process capability index ¢ -

First, we introduce the asymptotic
result for our capability index C ppr @S
follows.

Theorem 1 Assume that p,= E(X—u)*
exists. Along almost all sample sequences
X, =X, X5, X,)

tends to oo, the following result holds:

given , as 7

\/_7!( ’apmk—— Cpmk)

NO, & o), ulM
d | _1X _ _dZ _dK(_Lg)_ Y
4, . W

3r 6 I
N(O,Upnlk), ﬂ>M
where
r =V 02+(,U“ T)Z,

P = 55| & (T=wd= Mt )’
— p3(d— M+ p)x{ 2+ {d— M+ )(T— )}
+ 4 (= o= M+ 7],
(Y,2) ~ BN((0,0),2)
Ot = 55| P (u= Dd=pt M)*
~py(d—p+ Mx 2+ (d—p+M)(p— T
+ o (= a"(d— ut 7).
Proof See Chen and Hsu(1995).

X;

(& X\ (X e (X0 (X)L (X
xi\) ) XA X

be  conditionally with
common distribution g, With Bickel and
Freedman(1981: Theoreml and Theorem?2)
and Mallows(1972), we obtain the
following limiting distribution. As 4 and

independent,

m tend to oo!

A, N((o 0. ( it 200 ))
,u3+2ua ,u4+4,u,u3+4p262 at
Hence, we obtain Lemma 1 by the
above result with simple calculations.
Lemma 2 Assume that function g(z, v)
is differentiable. Along almost all sample
sequences given in=(X, Xy, X,), as

m and g tend to oo:

Vol g(X*, S'%) — g(X, 59)lx, % N0, D' ED)

where

D= (-GG A8ty Da0,0).

Proof The Lemma2 follows from
Lemmal and the TheoremA(p.122) of
Serfling (1980).

Also, the consistency of our bootstrap for
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statistical inference of our process

capability index T e 15 easily provided

as follows.

Theorem 2 Assume that
= E(X—p)* exists. Along almost all
sample sequences given
X,=(X,,X,,,X,), with our bootstrap

algorithm as 4 and s tend to oo, we
obtain as follows;

V. T = T ol 2
N(O Ozmk) /J<M
4| ANz T,y
3r 67 3T 2 ,
N(O,O'pmk), wM
where
r=V+(u—T)7 ,
P = S| [P +(T—m@-M+ )
— py{d— M+ & +(d— M+ p)( T— p)}
+ o = N d— M+ ),
(Y,2) ~ BN((0,0),2) ,
i = 555 [ | (= D=+ 10}
— uy(d— p+ M+ (d— p+ M)(u— T}
+‘4L(#4—a4)(d—#+M)2]
Proof The proof 1is obtained by

applying Lemmal and Lemma2 in case of
u<M or u>M Also, the result of the
case yu= M is derived by the following

calculations with some limit theorems

containing the Slutsky’'s theorem. We
consider the case2 as follows:

Vo T
= Vm

BEF

nmk'__?:{rmk)l An
d=1 X~
3Js*2+( X' — )2

An

d—l)_(:ﬂl )
WS+ (X—T)?

An

] d

‘2+( X'~ e ST (X- T)Z)
| X — 4l )

T3V st(x— 1P

X' — 4
(3 S‘2+(X T)?

Xn

The first term is calculated as follows:
3V sz+(x )2 )

( ‘/,L(X_D_
VomdV S22+ (X - DV S+ (X = T)Y)

WS+ ( X' - DV S+(X-D?
Vd S =S+ (X = T+ X~ D X' — X1
s+ ( X - DV S (X- D*

]

" (s2+( X' =DV S+ ( X— DD ‘ *

Xn

n

—d>(Y,Z) as >0, o0
where (v,2) ~BM(0,0),5), 2=+ (u— T)*
Also, the second term can be calculated

as follows:

”‘(335 +(X 7)2 75‘“‘X ?

s (X - nm
T

as mooo and y—>oo by rationalizing the

limit

applying some

theorems to it. Above two results imply
the u=M
This completes the proof.

numerator and

Theorem?2 for case
immediately.
Of course, these limiting distributions
are identical with those of Theorem 1.
This result is called the consistency of
the bootstrap.
We allow the resample size i to differ
from the number 4 of data points, to
estimate the distribution of the bootstrap

pivotal quantity, say,

Qu=Vml T = C o)/ S| 20
where §*2 o 1s the bootstrap version of
the plug-in estimator %, of the

variance ¢?,,, -

In the resampling, the 4 data points
XI,X‘Z,“.Y

with distribution function F, and mean

X, are treated as a population,
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"X and X* is considered as an bootstrap

estimator of X. First, take m=g#x The
idea is that the behavior of the bootstrap

that of @,
could be

computed from the data and wused to

pivotal quantity ! mimics
Thus, the distribution of g
approximate the unknown sampling
distribution of @, or even more directly,
the bootstrap distribution of
\/_—;L( ,C*pmk_ ’apmk)! Xn

could be used to approximate the
sampling distribution of V u( C,u— Cp)-
Either

confidence intervals for C,,, and would

approach would be lead to

be useful if the bootstrap approximation
were valid.

3. Bootstrap confidence limits

In this construct  six

bootstrap confidence limits for our index

section, we

C st including Studentized Bootstrap
(STUD), Hybrid Bootstrap(HYB), and
Accelerated  Bias-Corrected  Bootstrap
(ABC), which were theoretically studied
by Hall(1988).

Construction of a
(1-2a)100%
described, and a lower

two-sided
confidence interval will be
(1—)100%
confidence limit can be obtained by using
bootstrap

only the lower limit. The

confidence intervals of (¢ o QTE easily

obtained as follows. For each simulation
study, a sample of size » was drawn
and for each of size 4 B bootstrap
resamples( in this paper, we use B=1,000)
were drawn from that single sample with
our bootstrap algorithm. This single
simulation was then replicated N times(

in this paper, we use N=1,000).

3.1 Standard Bootstrap(SB) method

From the B=1000 bootstrap estimates,
C*,m(d, we calculate sample mean

and sample standard deviation as belows.

—~ B —* -
C (=5 2 T o,

B % A .
S‘Cp,..k:\/ B—1 tZ]( C pmk(l)_ C ﬁmk( . ))2

In fact, since the distribution of C s

approximately normal, we obtain the
(1—2:)100% SB confidence interval for
C pmk

( ’Cpmk—z l—aS*'C,,,,,,, /Cﬂmk—’_z I-aS*C‘,m,)
where z,_, is the (1—g) quantie of

the standard normal distribution.

3.2 Percentile Bootstrap(PB) method

The PB method is used in more than
half of the
confidence

bootstrap
Hall(1988)
pointed out a criticism of the PB method.

papers on
intervals. But

From the ordered collection of

C (D, ( T ) =< T',uB)
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we obtain the (1-22)100% PB

confidence interval for ¢ ik
( T pmleBD), T ,u(1-aBD)
where [ ] implies the gauss bracket;

that is, [x] is the largest integer less
than or equal to the real number .

3.3 Biased-Corrected Percentile
Bootstrap(BCPB) method

Our bootstrap estimator C",,, may be

biased. The BCPB method has
developed to correct for this potential

been

bias.
First, using the ordered distribution of

—~

C’ pm » Calculate the probability

1)0=P( ’(\:*pmkS ’Cpmkun )-
Second, calculate the quantile point 2z,
and probabilities, p, and P, such that

the following equations are satisfied.

2y = ¢_1(170),
P = 0Qz—z-,),
PU: @(220“{”21*0)

o(-)is the
cumulative distribution function.

the  (1-20)100% BCPB
confidence interval of the index C,,, is

( /C* pm/e([PLB])y t* pmk([PUB]))

where standard normal

Finally,

3.4 STUDentized bootstrap
(STUD) method

Hall(1988) mentioned that the STUD
method led to intervals which tended to

be conservative in the sense that they
had greater length and greater coverage
So the STUD
method does a better job than several

than other competitors.

other methods, provided that the variance

estimate 1s chosen well. But this
generalization can be failed in the case of
distributions  with  exceptionally large

positive kurtosis.

If process variance 4 is unknown, we

define the reasonable critical points,
y’ pmk, a» y pmk,a and y” pmk, a as
follows.

Vol T Coms) . ~
P[ ~ % 2k < Y pmk.a

an = a’

xﬂ] = a”

o pmk

Vol T,n— C -
P { m( f\'ﬁk Dmk) < y pmk,a

O pmke

v m( C s — Cpmk) ~ _
P -~ < y pmk,a Xn = a.
Gpmk
~ ' ~ ok ~
Here O pmk» O pmk and g pmk

are the bootstrap version of the standard

deviation ¢’ ,,.., O and G .. .

(1-2)100%
STUD confidence interval represented by

@ LSLpd< M

- o -
( C/zmk_ ;zn Y pmk, 1 -as

® u=M

Then we construct the

~ i ~
Cpm/e_ ,/n ypmk‘a)

( ’Cpmk__%imk- ;pmk,l —as t‘pmk_ﬁo"zm ;Irmk‘a)
© M<p<USL,

= 5 . = P e
( Cpmr— §7n Y pmbt-ar C e §7n Y pmka
where

T=VS+(Xx-14

)
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G = [FJ}T { P+ (T— X)d— M+ })}252
— Za(d— M+ X0{ T+ (d— M+ XN(T-X)
+-L( - sha- M+E)2]} "
T = [ ;36_554)(12 ] :
T = [—9%{;[{ P+ (X-Dad— X+ M)}zs2

— yld=X+Mx{ P+ (d— X+ M(X— D)}

/2
+%( - SYd— X+ M)2” ,

3.5 HYBrid bootstrap(HYB) method

The HYB method is used in almost all
of the studies not using the PB method.
Some users are even unaware that there
1s a difference between the HYB and PB
method. Equal-tailed intervals based on
the HYB method and the PB method
always have exactly the same length, but

usually have different centers.

When process variance ¢° is unknown,

we can use the critical point, % , of the
equation (4). The (1—-2a)100% HYB
confidence interval is

@ LSLLud M,

~ p . N :7 .
(Cpmk_ }77! X pmk1-ar  Come— }7n xﬁmk,a)

® u=M,

((Comm ™ i T = 3 )
© M{u<USL,

R L . ~ 5 -
( C ok — }77[ X pmki-ar  Cpme— §7n X pmbk.a

pmk,as X pmk, a
the following

,

where »° and %

pmk, a

are satisfied equations,

repectively.

}

)

Vol CT...— T N
P{ M C o= o) xn] _—
Gpmk
[ Vol T = Come) _ - }
P -~ bl x{zmka Anf — Q
Gpmk
Vm( T, .— C o
P{ m( Em,k, gmk) < % ik Xn} = q.
gpmk

3.6 Accelerated Bias-Corrected
bootstrap(ABC) method

It may occur that the bootstrap
distributions obtained by using only a
sample of the complete bootstrap

distribution may be shifted higher or
lower than would be expected. Applied
statisticians make frequent use of devices
like transformations, bias corrections, and
even acceleration adjustments, to improve
the performance of the standard intervals.
The ABC method
properties of
transformations, properties not shared by
the STUD method, although the STUD
method does a better job than the ABC
method, provided the variance estimate is

enjoys useful

invariance under

chosen correctly.

The acceleration constant, ¢ , always
measures the rate of change of standard
error on a normalized scale. Consider

d=2 and the function g( u)= g(u, p,) for

process capability index (C,, The
acceleration constant a for process
indices defined by Hall(1998) is as
follows.
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= W[ i 21 ; Q.a,a ,]k]

where q,=dg/oyn,, i=1,2 -
First, calculate the bootstrap estimator,
a , of the acceleration constant a for

our capability index C e AS follows :

~_ [ 2 2 ~ o~ o~
We must keep in mind all estimators
for acceleration contant a consist of

bootstrap samples. This estimate, 7

,approximately coincides with

ax —é‘ Skew ._- (1)

where 7, is the score function, which
is given by Efron(1987).

This sounds different to compute, but
it 1s in fact easier to get a good estimate

of g than of 2 .

Second, esitmate B3, and B, which are
Boau=0(z T 220+ az),
,BaUz @(Z l—a+ 220+ 2 Zzlga).

The (1-2a)100% ABC confidence
interval is
@ LSLulM,

-~ o " - 2 ~
(C/Jmk_ }In xgrs Come— ;77! XB.,U)

® ©w=M,

( Acpmk_ﬁgﬁmk ;C;L.Lv
© M<u< USL,

( ’Cﬂmk_ﬁo-?lﬂm&

C o™ 7‘2 xﬂU)

Imzk 7‘“’1 )

(1) Acceleration Constant for C,,,

We take the function

(d=lm=M)
3V (= 1)+ (u— 1)?
First, consider the case of y= 7. The

g p) =gy pny)=

a3=a;=( since g(.) does not depend

on p, and gy,

® LSL<u< M,
a = (d+ X —M) X357 +135",
a, = — (d+ X' —M6S™*
® u=m
221 = d}*BS*S,
@ = —d6S*?
© M ud USL,
2, = (d— X'+M) X 3S™—-13S",
2= —(d— X' +M)6S™

Second, consider the case of =T The

as;=a,=0 since g( - )does not depend on

[y and Iy
@ LSLLu<M,
o 1_ |4 —dt X' =T
WS (X - 1) 35°2+( X - T)?
-~ d+ X' =M
ag = . 3
682 +( X —1?°
® u=M
al - az‘ % ,
38" 4 (X" -1
~ d
ay — — - _%_
6 S+ X -1
© M{u< USL,
’c\z 1

T st (x -7
[ (d— X +MT3S2+( X' — T)2 11,

= —d— X +M6STH( X — TV2

In two cases,  ,, are as belows.




<Table 1> Coverage of 95% Lower CL and 90% CI for C,

(=1.491) : N(50,2%)

mk

Sample| Bootstrap (Coverage of 95%|Coverage of 90%| Average Length DeS\E?;;lt(iiSrrldof
Size Method Lower CL CI of 90% CI 90% CI
AN 0.907 0.726 0.8516 0.3378
SB 0.950* 0.847 1.2421 0.5899
PB 0.878 0.826 1.1538 0.5091
BCPB 0.885 0.834 1.1323 0.4390
n=10 | sTUD 0.943+ 0.847 1.1889 0.6660
HYB 0.974 0.781 1.1538 0.5091
ABC 0.903 0.829 1.0658 0.3819
AN 0.952% 0.830 0.5791 0.1322
SB 0.959 0.873 0.6315 0.1320
PB 0921 0.865 0.6240 0.1287
n=30 BCPB 0.928 0.870 0.6242 0.1210
STUD 0.952% 0.876% 0.6511 0.1658
HYB 0.974 (0.853 0.6240 0.1287
ABC 0.942% C.870 0.6143 0.1187
AN 0.972 C.836 0.4535 0.0799
SB 0.975 0.876x* 0.4878 0.0799
PB 0.955% C.867 0.4848 0.0795
n=50 BCPB 0.952x C.870 0.4853 0.0769
STUD 0.966% C.875 0.5005 0.0928
HYB 0.982 0.869 0.4848 0.0795
ABC 0.969 0.862 0.4813 0.0772

T = _b ,z::l( X,— X" our discussion that sample size n coincides

M = _]1; Zx( Xi— T()Z( Y,-—_Y)_
fm = B (X XY= D2,
2‘222 = _b 'Zl( Yi_?)a, Y= X%

Bt = Hon T Mz, Mo T

3. Simulation result for our
process capability index c,,,

Comparing some confidence limits, we
consider the case when the underlying
And we restrict

distribution is normal.

with bootstrap sample size m( n=m=10, 30,
50 ). Also, we choose two control limits
USL=60 and 1L.SL=40. Considering Franklin
Wasseman(1992)'s of
we choose two

and design
simulation experiment,
process means 50, 52 and two process
variances 2%, 3%.

For the various methods discussed in
section III, simulation results are tabulated
in Tables 1 through 4. First of all, we
note the results of the 95%
lower confidence limits. The limits of SB

STUD are well

bootstrap

and achieved for the
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nominal coverage 0.95 of the index ( ok
In fact, most of the practical coverages of
SB and STUD confidence intervals are
contained in the interval { 0.933, 0.967 )
for the true value of 0.95. On the other
hand,

departures

the other limits show significant
from 0.95,
than the nominal value 0.95. However, as

especially, lower
we expect, all of these bootstrap limits
tend to increase towards to 0.95 as the
sample size n increases but the rate is
slow particularly for the PB limits.

Also for the 90% bootstrap confidence
intervals, we obtained the result that the
limits of SB and STUD are well achieved

in proportions consistently near the nominal
coverage 090 for the index ¢ o Similarly
a 99% confidence interval for the coverage
proportion of a true 90% confidence interval
would be (0.876, 0924). None of the SB
and STUD intervals
outside this range too. Such results seem

confidence were
to validate the simulation (since we may
expect the limits as a normal result) and
they also validate the performance of the
SB and STUD method as being equivalent
in coverage performance for the

C pmr the

underlying normal process.

index

under assumption of an

<Table 2> Coverage of 95% Lower CL and 90% CI for C,,,.(=1.054) : N(50,3%)
Sapxple Bootstrap [Coverage of 95%|Coverage of 90%| Average Length DS&?;?c?r{dof
Size Method Lower CL CI of 90% CI 90% CI

AN 0.930* 0.674 0.5839 0.2278

SB 0.973 0.839 0.9204 0.4232

PB 0.923 0.811 0.8542 0.3662

n=10 BCPB 0.928 0.830 0.8697 0.3447
STUD 0.959= 0.807 0.8940 0.4680

HYB 0.982 0.751 0.8542 0.3662

ABC 0.939* 0.809 0.8085 0.2785

AN 0.957* 0.812 0.4097 0.0789

SB 0.967* 0.876% 0.4766 0.1100

PB 0.939= 0.874 0.4707 0.1080

n=30 BCPB 0.948% 0.883x 0.4756 0.1020
STUD 0.956% 0.881= 0.4998 0.1532

HYB 0.951= 0.851 0.4708 0.1080

ABC 0.952x 0.881* 0.4671 0.1011

AN 0.968 0.836 0.3233 0.0611

SB 0.966%* 0.881x 0.3617 0.0628

PB 0.957% 0.873 0.3593 0.0629

n=50 BCPB 0.950% 0.882x 0.3635 0.0607
STUD 0.956% 0.893x 0.3756 0.0792

HYB 0.970 0.861 0.3593 0.0629

ABC 0.959x 0.878x 0.3586 0.0604
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<Table 3> Coverage of 95% Lower CL and 90% CI for C,,,(=1.193) : N(52,2%)

Sample Bootstrap Coverage of 95% | Coverage of 90% |Average Length of | Standard Deviation
Size Method Lower CL ) 90% CI of 90% CI
AN 0.903 0.797 0.8918 0.2746
SB 0.960% 0.890% 1.2485 0.5787
PB 0.868 0.811 1.1509 0.4940
n=10 BCPB 0.879 0.816 1.0715 0.4224
STUD 0.945* 0.889+ 1.1876 0.6527
HYB 0.979 0.809 1.1509 0.4940
ABC 0.900 0.825 1.0093 0.3637
AN 0.935x 0.858 0.5807 0.1209
SB 0.953% 0.887+ 0.6319 0.1457
PB 0.895 0.849 0.6209 0.1420
n=30 BCPB 0.910 0.863 0.6040 0.1320
STUD 0.953x 0.982x 0.6528 0.1594
HYB 0.964x 0.859 0.6209 0.1420
ABC 0.930 0.864 0.5951 0.1286
AN 0.946% 0.872 0.4578 0.0717
SB 0.959% 0.890= 0.4806 0.0804
PB 0.917 0.883= 0.4759 0.0787
n=50 BCPB 0.932 0.883x* 0.4638 0.0758
STUD 0.963 0.889* 0.4837 0.0916
HYB 0.978 0.866 0.4759 0.0787
ABC 0.947* 0.881= 0.4653 0.0749
<Table 4> Coverage of 95% Lower CL and 90% CI for C,,.(=0.843) @ N(52,3%)

Sample | Bootstrap Coverage of 95% | Coverage of 90% |Average Length of | Standard Deviation
Size Method Lower CL CI 90% CI of 90% CI
AN 0.862 0.785 0.6584 0.2020
SB 0.928 0.867 0.9131 0.4211
PB 0.852 0.625 0.8461 0.3602
n=10 BCPB 0.859 0.628 0.8000 0.3091
STUD 0.951= 0.836 0.8915 0.4627
HYB 0.958+ 0.809 0.8461 0.3602
ABC 0.880 0.827 0.7581 0.2735
AN 0.927 0.866 0.4406 0.0884
SB 0.941* 0.887+ 0.4800 0.1069
PB 0.900 0.870 0.4716 0.1044
n=30 BCPB 0.910 0.870 0.4602 0.0976
STUD 0.958+ 0.893* 0.4993 0.1438
HYB 0.961* 0.871 0.4716 0.1044
ABC 0.929 0.877 0.4552 0.0951
AN 0.927 0.868 0.3471 0.0523
SB 0.936% 0.883%* 0.3636 0.0583
PB 0.901 0.866 0.3605 0.0576
n=50 BCPB 0911 0.871 0.3554 0.0554
STUD 0.952x 0.894 0.3728 0.0752
HYB 0.959* 0.878 0.3605 0.0576
ABC 0.927 0.875 0.3533 0.0551
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