• Title/Summary/Keyword: Process Response

Search Result 4,480, Processing Time 0.034 seconds

User Response to Mobile Payment System: Emotional, Cognitive, and Behavioral Approaches (모바일 간편결제시스템 사용의 감성적, 인지적, 행동적 반응 과정 연구)

  • Choi, Yoo-Jung;Hwangbo, Hyunwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1158-1164
    • /
    • 2022
  • In this study, the emotional reaction process and the cognitive reaction process were divided into the process of building trust in order to form a continuous use intention in the process of using the mobile simple payment system. We examined the process by which various external factors generate continuous use intentions, that is, behavioral responses through the process of each reaction. External factors were divided into social factors, systemic factors, and social factors. Among them, system factors were social norms and images, and systemic factors were simplicity and accessibility. And the social factors consisted of security and compatibility. And the emotional response was set as pleasure and emotional trust, the cognitive response was cognitive trust, and the final dependent variable was set as continuous use intention. A survey was conducted for model analysis, and the analysis results were derived using PLS.

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

Investigations into the Causes of Wardrobe Pveferene/Dispreference through Open-ended Response Questionnaire (자유 기술 응답을 통한 보유 의복 선호/비선호 원인 구조 고찰)

  • Kim Saehee
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.8
    • /
    • pp.59-74
    • /
    • 2004
  • The Purposes of this study are to investigate consumers' causes of clothing preference and dispreference separately, and to get 'real' descriptions about that causes using an open-ended response questionnaire. The sample was composed of 81 undergraduate students. Subjects were asked to select their preferred clothing and disprefered clothing respectively among wardrobes they have and to describe the causes of that preference/dispreference. The data was collected through an open-ended response questionnaire and analyzed using content analysis. The system for content analysis was divided into the view Point of image, clothing itself, wearer's physical characteristics, wearing situation, others' response, wearer's values, wearer's consciousness, and purchase process. Image was the primary cause that raised clothing preference, and clothing itself, wearer's physical characteristic, wearing situation, others' response, wearer's consciousness, wearer's values, and purchase process followed. In audition. wearer's physical characteristic was the primary cause that raised clothing dispreference. and image, clothing itself. wearer's consciousness, wearer's values. wearing situation, purchase process, and others' response followed. Finally, the framework for the causes of clothing preference/dispreference was developed.

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Forming Process Design of Fuel Injector Housing by Response Surface Method (반응표면분석법을 이용한 연료분사하우징의 성형공정설계)

  • Park K. H.;Yeo H. T.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.311-314
    • /
    • 2004
  • The housing of the fuel injector supports the rod, the niddle valve and the solenoid. Based on the procedure of process design, in this paper, the forming operation is designed by the rigid-plastic finite element method. The metal flow during the forming of the fuel injector housing is axisymmetric until the final forming process. The response surface method has been performed to reduce the under-fill and the maximum effective strain. From the results of RSM, the second order regression model of equation is calculated by the least square method and used to determine the optimal values of design variables by simultaneously considering the responses. It is noted that upper under-fill is affected by the design variables of the $2^{nd}$ forming process and lower under-fill is affected by the design variables of the 1st forming process.

  • PDF

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화)

  • Gwon Jun-Beom;Lee Jong-Seok;Lee Sang-Ho;Jeon Chi-Hyeok;Kim Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

Weighted Mean Squared Error Minimization Approach to Dual Response Surface Optimization: A Process Capability Indices-Based Weighting Procedure (쌍대반응표면최적화를 위한 가중평균제곱오차 최소화법: 공정능력지수 기반의 가중치 결정)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.685-700
    • /
    • 2014
  • Purpose: The purpose of this paper is to develop a systematic weighting procedure based on process capability indices method applying weighted mean squared error minimization (WMSE) approach to dual response surface optimization. Methods: The proposed procedure consists of 5 steps. Step 1 is to prepare the alternative vectors. Step 2 is to rank the vectors based on process capability indices in a pairwise manner. Step 3 is to transform the pairwise rankings into the inequalities between the corresponding WMSE values. Step 4 is to obtain the weight value by calculating the inequalities. Or, step 5 is to obtain the weight value by minimizing the total violation amount, in case there is no weight value in step 4. Results: The typical 4 process capability indices, namely, $C_p$, $C_{pk}$, $C_{pm}$, $C_{pmk}$ are utilized for the proposed procedure. Conclusion: The proposed procedure can provide a weight value in WMSE based on the objective quality performance criteria, not on the decision maker's subjective judgments or experiences.

Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology (저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구)

  • 박현성;김태형;이세헌
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2003
  • Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)