• 제목/요약/키워드: Process Performance Graph

Search Result 117, Processing Time 0.024 seconds

A new meta-heuristic optimization algorithm using star graph

  • Gharebaghi, Saeed Asil;Kaveh, Ali;Ardalan Asl, Mohammad
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.99-114
    • /
    • 2017
  • In cognitive science, it is illustrated how the collective opinions of a group of individuals answers to questions involving quantity estimation. One example of this approach is introduced in this article as Star Graph (SG) algorithm. This graph describes the details of communication among individuals to share their information and make a new decision. A new labyrinthine network of neighbors is defined in the decision-making process of the algorithm. In order to prevent getting trapped in local optima, the neighboring networks are regenerated in each iteration of the algorithm. In this algorithm, the normal distribution is utilized for a group of agents with the best results (guidance group) to replace the existing infeasible solutions. Here, some new functions are introduced to provide a high convergence for the method. These functions not only increase the local and global search capabilities but also require less computational effort. Various benchmark functions and engineering problems are examined and the results are compared with those of some other algorithms to show the capability and performance of the presented method.

Parallel Processing of Multi-Way Spatial Join (다중 공간 조인의 병렬 처리)

  • Ryu, Woo-Seok;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.256-268
    • /
    • 2000
  • Multi-way spatial join is a nested expression of two or more spatial joins. It costs much to process multi-way spatial join, but there have not still reported the scheme of parallel processing of multi-way spatial join. In this paper, parallel processing of multi-way spatial join consists of parallel multi-way spatial filter and parallel spatial refinement. Parallel spatial refinement is executed by the following two steps. The first is the generation of a graph used for reducing duplication of both spatial objects and spatial operations from pairs candidate object table that are the results of multi-way spatial filter. The second is the parallel spatial refinement using that graph. Refinement using the graph is proved to be more efficient than the others. In task creation for parallel refinement, minimum duplication partitioning of the Spatial_Obicct_On_Node graph shows best performance.

  • PDF

Processing of Multiple Regular Path Expressions using PID (경로 식별자를 이용한 다중 정규경로 처리기법)

  • Kim, Jong-Ik;Jeong, Tae-Seon;Kim, Hyeong-Ju
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.274-284
    • /
    • 2002
  • Queries on XML are based on paths in the data graph, which is represented as an edge labeled graph model. All proposed query languages for XML express queries using regular expressions to traverse arbitrary paths in the data graph. A meaningful query usually has several regular path expressions in it, but much of recent research is more concerned with optimizing a single path expression. In this paper, we present an efficient technique to process multiple path expressions in a query. We developed a data structure named as the path identifier(PID) to identify whether two given nodes lie on the fame path in the data graph or not, and utilized the PID for efficient processing of multiple path expressions. We implement our technique and present preliminary performance results.

A Research for Imputation Method of Photovoltaic Power Missing Data to Apply Time Series Models (태양광 발전량 데이터의 시계열 모델 적용을 위한 결측치 보간 방법 연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1251-1260
    • /
    • 2021
  • This paper discusses missing data processing using simple moving average (SMA) and kalman filter. Also SMA and kalman predictive value are made a comparative study. Time series analysis is a generally method to deals with time series data in photovoltaic field. Photovoltaic system records data irregularly whenever the power value changes. Irregularly recorded data must be transferred into a consistent format to get accurate results. Missing data results from the process having same intervals. For the reason, it was imputed using SMA and kalman filter. The kalman filter has better performance to observed data than SMA. SMA graph is stepped line graph and kalman filter graph is a smoothing line graph. MAPE of SMA prediction is 0.00737%, MAPE of kalman prediction is 0.00078%. But time complexity of SMA is O(N) and time complexity of kalman filter is O(D2) about D-dimensional object. Accordingly we suggest that you pick the best way considering computational power.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Fast Sampling Set Selection Algorithm for Arbitrary Graph Signals (임의의 그래프신호를 위한 고속 샘플링 집합 선택 알고리즘)

  • Kim, Yoon-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1023-1030
    • /
    • 2020
  • We address the sampling set selection problem for arbitrary graph signals such that the original graph signal is reconstructed from the signal values on the nodes in the sampling set. We introduce a variation difference as a new indirect metric that measures the error of signal variations caused by sampling process without resorting to the eigen-decomposition which requires a huge computational cost. Instead of directly minimizing the reconstruction error, we propose a simple and fast greedy selection algorithm that minimizes the variation differences at each iteration and justify the proposed reasoning by showing that the principle used in the proposed process is similar to that in the previous novel technique. We run experiments to show that the proposed method yields a competitive reconstruction performance with a substantially reduced complexity for various graphs as compared with the previous selection methods.

Triangulation Based Skeletonization and Trajectory Recovery for Handwritten Character Patterns

  • Phan, Dung;Na, In-Seop;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.358-377
    • /
    • 2015
  • In this paper, we propose a novel approach for trajectory recovery. Our system uses a triangulation procedure for skeletonization and graph theory to extract the trajectory. Skeletonization extracts the polyline skeleton according to the polygonal contours of the handwritten characters, and as a result, the junction becomes clear and the characters that are touching each other are separated. The approach for the trajectory recovery is based on graph theory to find the optimal path in the graph that has the best representation of the trajectory. An undirected graph model consisting of one or more strokes is constructed from a polyline skeleton. By using the polyline skeleton, our approach accelerates the process to search for an optimal path. In order to evaluate the performance, we built our own dataset, which includes testing and ground-truth. The dataset consist of thousands of handwritten characters and word images, which are extracted from five handwritten documents. To show the relative advantage of our skeletonization method, we first compare the results against those from Zhang-Suen, a state-of-the-art skeletonization method. For the trajectory recovery, we conduct a comparison using the Root Means Square Error (RMSE) and Dynamic Time Warping (DTW) in order to measure the error between the ground truth and the real output. The comparison reveals that our approach has better performance for both the skeletonization stage and the trajectory recovery stage. Moreover, the processing time comparison proves that our system is faster than the existing systems.

Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing (인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론)

  • Jeon, MyungJoong;So, ChiSeoung;Jagvaral, Batselem;Kim, KangPil;Kim, Jin;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.998-1009
    • /
    • 2015
  • In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.

An LDPC Code Replication Scheme Suitable for Cloud Computing (클라우드 컴퓨팅에 적합한 LDPC 부호 복제 기법)

  • Kim, Se-Hoe;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • This paper analyze an LDPC code replication method suitable for cloud computing. First, we determine the number of blocks suitable for cloud computing through analysis of the performance for the file availability and storage overhead. Also we determine the type of LDPC code appropriate for cloud computing through the performance for three types of LDPC codes. Finally we present the graph random generation method and the comparing method of each generated LDPC code's performance by the iterative decoding process. By the simulation, we confirmed the best graph's regularity is left-regular or least left-regular. Also, we confirmed the best graph's total number of edges are minimum value or near the minimum value.

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.