International Journal of Computer Science & Network Security
/
제22권5호
/
pp.143-148
/
2022
Brain tumor classification is an important process that allows doctors to plan treatment for patients based on the stages of the tumor. To improve classification performance, various CNN-based architectures are used for brain tumor classification. Existing methods for brain tumor segmentation suffer from overfitting and poor efficiency when dealing with large datasets. The enhanced CNN architecture proposed in this study is based on U-Net for brain tumor segmentation, RefineNet for pattern analysis, and SegNet architecture for brain tumor classification. The brain tumor benchmark dataset was used to evaluate the enhanced CNN model's efficiency. Based on the local and context information of the MRI image, the U-Net provides good segmentation. SegNet selects the most important features for classification while also reducing the trainable parameters. In the classification of brain tumors, the enhanced CNN method outperforms the existing methods. The enhanced CNN model has an accuracy of 96.85 percent, while the existing CNN with transfer learning has an accuracy of 94.82 percent.
캐주얼게임이 대중화되면서 게임개발과정에서 다양한 유저들의 게임플레이의 성향과 요구사항들을 만족시켜야 할 필요성이 증가하였다. 이를 위해서는 게임개발과정의 테스트단계에서 다양한 유저의 게임플레이 패턴을 분석해야 한다. 본 논문에서는 유저의 게임플레이 측정데이터를 사용하는 Petri net 모델의 시뮬레이션을 통해 액션 패턴을 분석하는 방법을 제안하였다. 제안한 방법은 유저의 게임플레이 측정데이터를 사용하기 때문에 시뮬레이션 환경은 실제적이고 또한 Petri net 모델을 사용한 분석이기 때문에 액션 패턴의 reachability, coverbility, liveness 등과 같은 다양한 분석이 가능하다. 제안하는 방법의 적용사례로 Petri net 모델링 도구인 GPenSIM v4.0 도구를 사용하여 팩맨(Pacman) 게임의 게임플레이 패턴을 분석하는 Petri net 모델을 구현하고 시뮬레이션을 결과들을 제시하였다. 적용사례의 제시 결과들은 제안하는 방법이 Petri net 분석 기능을 이용하여 유저의 게임플레이의 액션패턴을 다양하게 분석가능 함을 보여주었다.
In a trawl-net simulation, it is very important to process the physical phenomenons resulting from real collisions between a net and fishes. However, because it is very difficult to reconstruct the surface with mass points, many researchers have generally detect the collision using an approximation model employing a sphere, a cube or a cylinder. These approaches occur often result in inaccurate movements of a fish due to the difference between a real-net and a designed-net. So, many systems have manually adjusted a net surface based on actual measurements of mass points. These methods are very inefficient because it needs much times in an adjustment and also causes more incorrect inputs according to a rapid increment in the number of points. Therefore, in this paper, we propose a reconstruction method that it semi-automatically reconstructed trawl-net surfaces using the equation of motion at each mass point in a mass-spring model. To get an easy start in a beginning step of the spread, it enables users to get interactive adjustment on each mass point. We had designed a trawl-net model using geometrical structures of trawl-net and then automatically reconstructed the trawl-net surface using scale-space meshing techniques. Last, we improve the accuracy of reconstructed result by correction user interaction.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권1호
/
pp.6-9
/
2006
A generalized net is used to construct a model which describes the process of evaluation of the problems solved by students. The model utilizes the theory of intuitionistic fuzzy sets. The model can be used to simulate some processes, related to estimation of students' background.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권2호
/
pp.691-708
/
2014
This paper formalizes a special type of social networking knowledge, which is called "workflow performer-role affiliation networking knowledge." A workflow model specifies execution sequences of the associated activities and their affiliated relationships with roles, performers, invoked-applications, and relevant data. In Particular, these affiliated relationships exhibit a stream of organizational work-sharing knowledge and utilize business process intelligence to explore resources allotting and planning knowledge concealed in the corresponding workflow model. In this paper, we particularly focus on the performer-role affiliation relationships and their implications as organizational and business process intelligence in workflow-driven organizations. We elaborate a series of theoretical formalisms and practical implementation for modeling, discovering, and visualizing workflow performer-role affiliation networking knowledge, and practical details as workflow performer-role affiliation knowledge representation, discovery, and visualization techniques. These theoretical concepts and practical algorithms are based upon information control net methodology for formally describing workflow models, and the affiliated knowledge eventually represents the various degrees of involvements and participations between a group of performers and a group of roles in a corresponding workflow model. Finally, we summarily describe the implications of the proposed affiliation networking knowledge as business process intelligence, and how worthwhile it is in discovering and visualizing the knowledge in workflow-driven organizations and enterprises that produce massively parallel interactions and large-scaled operational data collections through deploying and enacting massively parallel and large-scale workflow models.
많은 기업들은 정보기술의 발전과 더불어 이익을 증대시키고 비용을 절감하기 위하여 정보화 시스템을 도입하고 있다. 본 논문에서는 객체지향 방법론 설계 도구인 UML을 사용하여 AS-IS를 구축하고 닷넷 환경의 유스케이스 다이어그램, 시퀀스 다이어그램, 컴포넌트 다이어그램 등을 통하여 TO-BE 프로세스 모델을 설계한다. 그리고 소규모 회사 조직 시스템에 적용시키기 위하여 닷넷 기반으로 구축하면 컴포넌트 재사용 및 소프트웨어 생산성을 증진시킬 수 있다.
섬유산업에서 생산된 직물의 결함을 식별하는 것은 품질관리를 위한 핵심적인 절차이다. 본 연구는 직물의 이미지를 분석하여 결함을 검출하는 모델을 만들고자 하였다. 연구에 사용된 모델은 딥러닝 기반의 VGGNet 과 ResNet이었고, 두 모델의 결함 검출 성능을 비교하여 평가하였다. 정확도는 VGGNet 모델이 0.859, ResNet 모델이 0.893으로 ResNet 모델의 정확도가 더 높은 결과를 보여주었다. 추가적으로 딥러닝 모델이 직물의 이미지 내에서 결함으로 인식한 부분의 위치를 알아보기 위하여 XAI(eXplainable Artificial Intelligence)기법인 Grad-CAM 알고리즘을 사용하여 모델의 관심영역을 도출하였다. 그 결과 딥러닝 모델이 직물의 결함으로 인식한 부분이 육안으로도 실제 결함이 있는 것으로 확인되었다. 본 연구의 결과는 직물의 결함 검출에 있어서 딥러닝 기반의 인공지능을 활용함으로써 섬유의 생산과정에서 발생하는 시간과 비용을 줄일 수 있을 것으로 기대된다.
Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.
고도지능망의 개념모델에서는 총괄기능평면에서 다양한 지능망서비스 제공을 위하여 서비스에 독립적인 기능블럭인 SIB(service indenpendent building block)을 정의하고 있다. 본 논문은 이중에서 가장 근간이 되는 기본호처리 SIB를 위한 지능망교환기(SSP: service switching point)와 서비스제어시스템(SCP: service control point) 간의 프로토콜 모델링에 대하여 기술하였다. 모델링을 위하여 Petri Net를 이용하며, 도달성 트리(reachability tree)를 분석하여 모델에 대한 검증을 한다. 본 논문의 결과는 고도지능망 기본호처리 SIB 설계와 구현을 위하여 이용될 수 있을 것이다.
전통적으로 대부분의 악성코드는 도메인 전문가에 의해 추출된 특징 정보를 활용하여 분석되었다. 하지만 이러한 특징 기반의 분석방식은 분석가의 역량에 의존적이며 기존의 악성코드를 변형한 변종 악성코드를 탐지하는 데 한계를 가지고 있다. 본 연구에서는 도메인 전문가의 개입 없이도 변종 악성코드의 패밀리를 분류할 수 있는 ResNet-Variational AutoEncder 기반 변종 악성코드 분류 방법을 제안한다. Variational AutoEncoder 네트워크는 입력값으로 제공되는 훈련 데이터의 학습 과정에서 데이터의 특징을 잘 이해하며 정규 분포 내에서 새로운 데이터를 생성하는 특징을 가지고 있다. 본 연구에서는 Variational AutoEncoder의 학습 과정에서 잠재 변수를 추출을 통해 악성코드의 중요 특징을 추출할 수 있었다. 또한 훈련 데이터의 특징을 더욱 잘 학습하고 학습의 효율성을 높이기 위해 전이 학습을 수행했다. ImageNet Dataset으로 사전학습된 ResNet-152 모델의 학습 파라미터를 Encoder Network의 학습 파라미터로 전이했다. 전이학습을 수행한 ResNet-Variational AutoEncoder의 경우 기존 Variational AutoEncoder에 비해 높은 성능을 보였으며 학습의 효율성을 제공하였다. 한편 변종 악성코드 분류를 위한 방법으로는 앙상블 모델인 Stacking Classifier가 사용되었다. ResNet-VAE 모델의 Encoder Network로 추출한 변종 악성코드 특징 데이터를 바탕으로 Stacking Classifier를 학습한 결과 98.66%의 Accuracy와 98.68의 F1-Score를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.