• Title/Summary/Keyword: Process Meta-Model

Search Result 156, Processing Time 0.021 seconds

Comparison of Epidermal Growth Factor Receptor Mutations between Primary Tumors and Lymph Nodes in Non-small Cell Lung Cancer: a Review and Meta-analysis of Published Data

  • Wang, Feng;Fang, Ping;Hou, Dan-Yang;Leng, Zai-Jun;Cao, Le-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4493-4497
    • /
    • 2014
  • Background: Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) can predict the clinical response to tyrosine kinase inhibitor (TKI) therapy. However, EGFR mutations may be different in primary tumors (PT) and metastatic lymph nodes (MLN). The aim of this study was to compare EGFR mutations between PT and the corresponding MLN in NSCLC patients, and provide some guidelines for clinical treatment using TKI therapy. Materials and Methods: A systematic review and meta-analysis was performed with several research databases. Relative risk (RR) with the 95% confidence interval (CI) were used to investigate the EGFR mutation status between PT and the corresponding MLN. A random-effects model was used. Results: 9 publications involving 707 patients were included in the analysis. It was found that activation of EGFR mutations identified in PT and the corresponding MLN was 26.4% (187/707) and 19.9% (141/707), respectively. The overall discordance rate in our meta-analysis was 12.2% (86/707). The relative risk (RR) for EGFR mutation in PT relative to MLN was 1.33 (95%CI: 1.10-1.60; random-effects model). There was no significant heterogeneity between the studies ($I^2$=5%, p=0.003). Conclusions: There exists a considerable degree of EGFR mutation discrepancy in NSCLC between PT and corresponding MLN, suggesting that tumor heterogeneity might arise at the molecular level during the process of metastasis.

Nonlinear Finite Element Analysis for the Swaging of a High-Pressure Hose (고압호스 스웨이징에 대한 비선형 유한요소해석)

  • Kim, B.T.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.44-50
    • /
    • 2003
  • The power steering hose is a kind of high-pressure hose with reinforced braids in rubber material. It is usually manufactured through the swaging process. In this paper, the deformation characteristics of a power steering hose during the swaging process were analyzed using the nonlinear finite element method. The material properties were obtained on experiments, and the contact conditions were used in consideration of real manufacturing process. Investigations were focused on the stress and strain values of the hose and meta] components at the maximum jaw stroke and at the completion of the process. Especially, the results of inner rubber component were interpreted in detail, because of its important role in the hose efficiency.

  • PDF

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

A Design of u-Learning's Teaching and Learning Model in the Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 u-러닝 교수학습 모형 설계)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.781-786
    • /
    • 2009
  • The cloud computing environment is a new trend of web based application parts. It can be IT business model that is able to easily support learning service and allocate resources through the internet to users. U-learning also is a maximal model with efficiency of the internet based learning. Thus, in this research, we proposed a design of u-learning's teaching and learning model that is applying the internet based learning. Proposal method is to fit u-learning and has 7 steps: Preparing, planning, gathering, learning process, analysis and evaluation, and feedback. We make a cloud u-learning server and cloud LMS to process and manage the service. And We also make a mobile devices meta data to aware the model.

  • PDF

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

The Research of Developing Meta-Evaluation Standards of the University Reform Evaluation : in respect of evaluation human resource development (대학 구조개혁평가에 대한 메타평가 준거 개발 연구 : 인적자원개발 관점의 적용)

  • Lee, Tae-Hee;Kim, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.649-662
    • /
    • 2017
  • Since 1980, the number of universities have increased dramatically. However, compared to the quantitative growth, the lack of qualitative growth has often been criticized. Students entering university are estimated to decrease by half in 2025 compared to 2014. In swift response to challenges with decreasing student enrollment, the first University Reform Evaluation (URE) for innovating universities, was conducted and resulted in controversy. Opposition is based on distrust of the overall system, questioning the reliability of the evaluation process utilized for the URE evaluation index. Meta-evaluation is required to improve the quality of evaluation, and standards developed prior to conducting the URE. Therefore, an interdisciplinary approach is necessary for the evaluation of human resource development. This research uses the interdisciplinary approach from the human resources development point of view in attempting to develop meta-evaluation criteria which will enable effective evaluation and analysis of URE. The meta-evaluation standard features the creation of the ERPOU model, by conducting literature review, and considers data from expert symposiums, and surveys. The ERPOU model consists of 5 evaluation fields, 21 evaluation categories, and 42 evaluation standards.

A Method of Applying Traceability among Product Line Engineering Artifacts (제품 계열 공학에서의 산출물간의 추적성 기법)

  • La Hyun Jung;Chang Soo Ho;Kim Soo Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.237-246
    • /
    • 2005
  • Product Line Engineering(PLE) is one of the technologies that develop applications economically reusing core assets. PLE consists of Framework Engineering(FE) and Application Engineering. Framework Engineering is to develop core assets that have common functionality shared by a set of family members. Application Engineering is to develop a specific application by instantiating the core assets. The PLE process increases reusability and efficiency because a specific application is developed by using core assets with less time and effort. Since definition of PLE artifacts and relationship between artifacts are not clear. developers have several troubles to make artifacts based on PLE process, are difficult to maintain consistency between artifacts, and do not use PLE process more practically. In this paper, we define meta-models of artifacts that are produced in PLE activities of PLE process and describe the traceability relationship between artifacts by using traceability map and guidelines that can apply traceability relationship. Finally, we define the way how trace links and guidelines of traceability map are applied.

A Study for Design of Distribution Center using Compromise Programming (Compromise Programming을 이용한 물류센터 설계에 관한 연구)

  • Heo Byoung-Wan;Lee Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.43-54
    • /
    • 2005
  • For the effective design of automated distribution center composed of Automated Storage/Retrieval System, Automated Guided Vehicle System, and Conveyor System, we proposed an analysis method to determining. design and control parameters with multiple performance objectives using Compromise Programming, which can resolve the dilemma of conflicting objectives. The Evolution Strategy generates the optimal solutions for each objectives. The Analytic Hierarchy Process selects the best solution among the alternatives generated from Evolution Strategy. The Regression Analysis formulates the objective functions for each objectives. By reducing deviations between goal values and target values generated from Analytic Hierarchy Process, Compromise Programming determines design and control parameters by compromising the multiple objectives formulated using Regression Analysis. When the parameters of system are changed, this proposed analysis method has a benefit of reducing costs and time without repeating whole simulation run.

  • PDF

Adaptive Process Decision-Making with Simulation and Regression Models (시뮬레이션과 회귀분석을 연계한 적응형 공정의사결정방법)

  • Lee, Byung-Hoon;Yoon, Sung-Wook;Jeong, Suk-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • This study proposes adaptive decision making method having feed-back structure of regression and simulation models to support the quick decision making of production managers by managing and integrating the mutual relationship among historical data. For that, from historical data that have extracted and accumulated from each process, we first selected major constraint resources that are used as independent variables in regression model. The regression model is designed by using the dependent variables (objectives) that defined above by managers and independent variables selected in previous step and simulation model that are composed of constraint resources is designed. In process of simulation run, we obtain the multiple feasible solutions (alternatives) by using meta-heuristic method. Each solution is substituted by regression equation and we found the optimal solution that is minimum of difference between values obtained by regression model and simulation results. The optimal solution is delivered and incorporated to production site and current operation results from production site is used to generate new regression model after that time.