• Title/Summary/Keyword: Process Heat Application

Search Result 475, Processing Time 0.026 seconds

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.

A Study of Nano-particle Distributions near a Heated Substrate using Molecular Dynamics Simulations (분자동역학을 이용한 열원 주변에서의 나노입자의 분포에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2019
  • Since nanofluids (NFs), which are a mixture of a small amount of nanoparticles and a bulk liquid solvent, were first proposed by Stephen Choi at the Argonne National Lab in 1995, they have been considered for use in many technical studies of power cooling systems and their practical application due to their high thermal conductivity and heat transfer coefficients compared to conventional coolants. Although nanofluids are a well-known form of engineering fluid that show great promise for use in future cooling systems, their underlying physics as demonstrated in experiments remain unclear. One proven method of determining the heat transfer performance of nanofluids is measuring the concentration of nanoparticles in a mixture. However, it is experimentally inefficient to build testbeds to systematically observe particle distributions on a nanoscale. In this paper, we demonstrate the distribution of nanoparticles under a temperature gradient in a solution using molecular dynamics simulations. First, temperature profiles based on substrate temperature are introduced. Following this, the radial pair distribution functions of pairs of nanoparticles, solvents, and substrates are calculated. Finally, the distribution of nanoparticles in different heating regions is determined.

Study of Thermal Bridge Breaker to Prevent the Thermal Bridge Effect on Metal Panel Roofs (금속패널지붕의 열교 방지를 위한 열교차단장치 개발 및 적용효과 분석)

  • Kim, Sun Ho;Jung, Chae Bong;Lee, Chung Shik;Kim, Jong Min;Kim, Byung Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.32-37
    • /
    • 2021
  • To realize a zero-energy building, a technology that minimizes the energy loss due to thermal bridges by preventing their formation is emerging as an important design factor. In this study, we develop a thermal bridge breaker to prevent thermal bridging in a metal panel roof and attempt to analyze the effects of its application. To this end, we fabricated a thermal bridge breaker and analyzed it in terms of its strength and heat-transfer characteristics, in addition to conducting a load simulation. The thermal bridge prevention effect of the developed thermal bridge breaker improved the insulation performance of the metal panel roof, and the results of a cooling/heating peak load simulation performed by applying the heat transmission resistance test results to a building proved the existence of this effect.

Effect of Post-Heat Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드의 전계방출 특성에 미치는 재열처리의 영향)

  • Ha, Sang-Hoon;Kwon, Na-Hyun;Song, Pung-Keun;Chang, Jiho;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.180-186
    • /
    • 2010
  • For the application of field emission display (FED), it is essential to develop a carbon nanotube (CNT) cathode with high emission current density. In this study, we developed and demonstrated a post-heat treatment (PHT) process to improve field emission properties of CNT cathodes. Since the PHT is intended to burn out organic materials covering the CNTs, the PHT was carried out by heating samples at a high temperature in an atmosphere. The PHT process is applied for samples processed by surface treatment with an adhesive tape. Compared to samples prior to the PHT, samples after the PHT at $360^{\circ}C$ showed about 17% improvement in emission current density. The major reason for the increased current density is mainly the increased aspect ratio of the CNTs because of the removal of the adhesive organic residues covering the CNTs, which were attached on the CNT surfaces during the surface treatment using the adhesive taping method.

Recent Technological Tendency of Laser/Arc Hybrid Welding (레이저/아크 하이브리드용접기술의 최신 동향)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.4-15
    • /
    • 2013
  • The laser/arc hybrid welding process is a new process combining the laser beam and the arc as welding heat source. The laser beam and arc influence and assist one another. By application of hybrid welding, synergistic effects are achievable, and disadvantage of the respective processes can be compensated. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. This review analyses the recent advances in the fundamental understanding of hybrid welding processes using the works of the data base of Web of Science (SCI-Expanded) since the 2000 year. The research activity on the hybrid welding has been become more actively since 2006, especially in China, presenting the most research papers in the world. Since the hybrid welding process was adopted in manufacturing of the automobile in Europe in the early of 2000's, its adopting is widely expanded in the field of manufacturing of automobile, ship building, steel construction and the other various industry. The hybrid welding process is expected to advance toward higher productivity, higher precision, higher reliability through the mixing of high power and flexible fiber laser or disk laser and digitalized pulsed arc source.

Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment

  • Karslioglu, Betul;Cicek, Umran Ensoy;Kolsaric, Nuray;Candogan, Kezban
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between $0.220-0.450mg{\cdot}kg^{-1}$, and TBA values of heat processed fermented sausages were in a range of $0.405-0.795mg{\cdot}kg^{-1}$. Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.

Control of Advanced Reactor-coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

  • Skavdahl, Isaac;Utgikar, Vivek;Christensen, Richard;Chen, Minghui;Sun, Xiaodong;Sabharwall, Piyush
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1349-1359
    • /
    • 2016
  • Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX ($T_{co}$) and the hot outlet temperature of the intermediate heat exchanger ($T_{ho2}$) by manipulating the hot-side flow rates of the heat exchangers ($F_h/F_{h2}$) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX ($T_{co}$) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

Effects of Nd:YAG Laser Welding Parameters on Fatigue life of Lap Joint Structure in Stainless Steel (스테인리스강의 Nd:YAG 레이저 겹치기 용접부 피로수명에 미치는 용접변수의 영향)

  • Kim, Yang;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Spot welding which use the main process for side block production of stainless steel railway vehicle is legged behind in laser welding about a quality and productivity. Although the laser welding has many potential advantages such as low heat input and aspect ratio of weld bead, its application to a new structural component still is required many engineering data including mechanical properties such as tensile, fatigue strength, etc on. Therefore, experimental analysis was carried out to understand the fatigue phenomena of different thickness stainless steel overlap joining panels by Nd:YAG laser welding. The fatigue life curves were obtained through fatigue tests with the various levels of applied load. The fatigue life is related with the parameters such as gap size and penetration depth through experiment. As the results, tensile strength and fatigue life were proportional in heat input level and gap was identified the major factor for fatigue life. Also we could know that deferent a-ferrite content at HAZ depend on welding heat input was important factor to determine a formation of initial crack and total fatigue life cycle.

Thermal Performance of a Printed Circuit Heat Exchanger considering Longitudinal Conduction and Channel Deformation (축방향 열전도와 유로 변형을 고려한 인쇄기판형 열교환기 열적 성능)

  • Park, Byung Ha;Sah, Injin;Kim, Eung-seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2018
  • Printed circuit heat exchangers (PCHEs) are widely used with an increasing demand for industrial applications. PCHEs are capable of operating at high temperatures and pressure. We consider a PCHE as a candidate intermediate heat exchanger type for a high temperature gas-cooled reactor (HTGR). For conventional application using stainless steels, design and manufacturing of PCHEs are well established. For applications to HTGR, knowledge of longitudinal conduction and deformation of channel is required to estimate design margin. This paper analyzes the effects of longitudinal conduction and deformation of channel on thermal performance using a code internally developed for design and analysis of PCHEs. The code has a capability of two dimensional simulations. Longitudinal conduction is estimated using the code. In HTGR operating condition, about ten percent of design margin is required to compensate thermal performance. The cross-sectional images of PCHE channels are obtained using an optical microscope. The images are processed with computer image process technique. We quantify the deformation of channel with dimensional parameters. It is found that the deformation has negative effect on structural integrity. The deformation enhances thermal performance when the shape of channel is straight in laminar flow regime. It reduces thermal performance in cases of a zigzag channel and turbulent flow regime.