Journal of the Korean Data and Information Science Society
/
v.21
no.6
/
pp.1311-1317
/
2010
A continuous time asymmetric power GARCH(1,1) model is suggested, based on a single background driving L$\'{e}$vy process. The stochastic differential equation for the given process is derived and the strict stationarity and kth order moment conditions are examined.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.7
/
pp.374-379
/
2016
On-line process monitoring schemes are designed to give early warnings of process faults. In the artificial intelligence and machine learning fields, reliable approaches have been utilized, such as kernel-based nonlinear techniques. This work presents a kernel-based empirical monitoring scheme with a small sample problem. The measurement data of normal operations are easy to collect, whereas special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing the process monitoring performance. This can be achieved by the preprocessing of raw process data and eliminating unwanted variations of data. In this work, the performance of several monitoring schemes was demonstrated using three-dimensional batch process data. The results showed that the monitoring performance was improved significantly in terms of the detection success rate.
Proceedings of the Korean Society of Precision Engineering Conference
/
2005.06a
/
pp.118-122
/
2005
Data mining is the process of autonomously extracting useful information or knowledge from large data stores or sets. For analyzing data of manufacturing processes obtained from database using data mining, source data should be collected form production process and transformed to appropriate form. To extract those data from database, a computer program should be made for each database. This paper presents a program to extract easily data form database in industry. The advantage of this program is that user can extract data from all types of database and database table and interface with Teamcenter Manufacturing.
Information systems has been developed and used in various business area, therefore there are abundance of history data (log data) stored, and subsequently, it is required to analyze those log data. Previous studies have been focusing on the discovering of relationship between events and no identification of anomaly instances. Previously, anomaly instances are treated as noise and simply ignored. However, this kind of anomaly instances can occur repeatedly. Hence, a new methodology to detect the anomaly instances is needed. In this paper, we propose a methodology of LAPID (Local Anomaly Process Instance Detection) for discriminating an anomalous process instance from the log data. We specified a distance metric from the activity relation matrix of each instance, and use it to detect API (Anomaly Process Instance). For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. To demonstrate our proposed methodology, we performed our experiment on real data from a domestic port terminal.
This study, a point rainfall process model, which could represent appropriately observed rainfall data, was to select. The point process models-rectangular pulses Poisson process model(RPPM), Neyman-Scott rectangular pulses Poisson process model(NS-RPPM), and modified Neyman-Scott rectangular pulses Poisson process model(modified NS-RPPM)-all based on Poisson process were considered as possible rainfall models, whose statistical analyses were performed with their simulation rainfall data. As results, simulated rainfall data using the NS-RPPM and the modified NS-RPPM represent appropriately statistics of observed data for several aggregation levels. Also, simulated rainfall data using the modified NS-RPPM shows similar characteristics of rainfall occurrence to the observed rainfall data. Especially, the modified NS-RPPM reproduces high-intensity rainfall events that contribute largely to occurrence of natural harzard such as flood and landslides most similarly. Also, the modified NS-RPPM shows the best results with respect to the total rainfall amount, duration, and inter-event time. In conclusions, the modified NS-RPPM was found to be the most appropriate model for the long-term simulation of rainfall.
Lee, Yonghyeok;Yi, Hojeong;Song, Minseok;Lee, Sang-Jin;Park, Sera
The Journal of Bigdata
/
v.1
no.2
/
pp.65-78
/
2016
In the rapid change of business environment, it is crucial that several companies with core competence cooperate together in order to deliver competitive products to the market faster. Thus a lot of companies are participating in supply chains and SCM (Supply Chain Management) become more important. To efficiently manage supply chains, the analysis of data from SCM systems is required. In this paper, we explain how to analyze SCM related data with process mining techniques. After discussing the data requirement for process mining, several process mining techniques for the data analysis are explained. To show the applicability of the techniques, we have performed a case study with a company in South Korea. The case study shows that process mining is useful tool to analyze SCM data. On specifically, an overall process, several performance measures, and social networks can be easily discovered and analyzed with the techniques.
This study quantifies and compares the drought return and duration characteristics by applying the Poisson process as well as based on by analyzing the observed data directly. The drought spatial distributions derived for the Gyunggi province are also compared. The monthly rainfall data are used to construct the SPI as a drought index. Especially, this study focuses on the evaluation of the Poisson process model when applying it to various data lengths such as in the spatial analysis 'of drought. Summarizing the results are as follows. (1) The Poisson process is found to be effective for the quantification of drought, especially when the data length is short. When applying the Poisson process, two neighboring sites are found insensitive to the data length to show similar drought characteristics, so the overall drought pattern becomes smoother than that derived directly from the observed data. (2) When the data length is very different site by site, the spatial analysis of drought based on a model application seems better than that based on the direct data analysis. This study also found more obvious spatial pattern of drought occurrence and duration when applying the Poisson process.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1702-1721
/
2019
A workflow process (or business process) management system helps to define, execute, monitor and manage workflow models deployed on a workflow-supported enterprise, and the system is compartmentalized into a modeling subsystem and an enacting subsystem, in general. The modeling subsystem's functionality is to discover and analyze workflow models via a theoretical modeling methodology like ICN, to graphically define them via a graphical representation notation like BPMN, and to systematically deploy those graphically defined models onto the enacting subsystem by transforming into their textual models represented by a standardized workflow process definition language like XPDL. Before deploying those defined workflow models, it is very important to inspect its syntactical correctness as well as its structural properness to minimize the loss of effectiveness and the depreciation of efficiency in managing the corresponding workflow models. In this paper, we are particularly interested in verifying very large-scale and massively parallel workflow models, and so we need a sophisticated analyzer to automatically analyze those specialized and complex styles of workflow models. One of the sophisticated analyzers devised in this paper is able to analyze not only the structural complexity but also the data-sequence complexity, especially. The structural complexity is based upon combinational usages of those control-structure constructs such as subprocesses, exclusive-OR, parallel-AND and iterative-LOOP primitives with preserving matched pairing and proper nesting properties, whereas the data-sequence complexity is based upon combinational usages of those relevant data repositories such as data definition sequences and data use sequences. Through the devised and implemented analyzer in this paper, we are able eventually to achieve the systematic verifications of the syntactical correctness as well as the effective validation of the structural properness on those complicate and large-scale styles of workflow models. As an experimental study, we apply the implemented analyzer to an exemplary large-scale and massively parallel workflow process model, the Large Bank Transaction Workflow Process Model, and show the structural complexity analysis results via a series of operational screens captured from the implemented analyzer.
Proceedings of the Korean Society of Precision Engineering Conference
/
2005.06a
/
pp.143-146
/
2005
Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.2
/
pp.184-190
/
2008
This paper describes a message model based on XML (eXtensible Markup Language) to present real-time data from sensors and instruments at manufacturing processes for web service. HTML (Hyper Text Markup Language) is inadequate for describing real-time data from process control plants while it is suitable for displaying non-real-time multimedia data on web. For XML-based web service of process data, XML format for the data presentation was proposed after investigating data of various instruments at steel-making plants. Considering transmission delay inevitably caused from increased message length and processing delay from transformation of raw data into defined format, which was critical for operation of a real-time system, its performance was evaluated by simulation. In the simulation, we assumed two implementation models for conducting the transformation function. In one model, transformation was done at an SCC (Supervisory Control Computer) after receiving real-time data from instruments. In the other model, transformation had been carried out at instruments before the data were transmitted to the SCC. Various tests had been conducted under different conditions of offered loads and data lengths and their results were described.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.