• Title/Summary/Keyword: Process Complexity

Search Result 1,667, Processing Time 0.024 seconds

Block-Mode Lattice Reduction for Low-Complexity MIMO Detection

  • Choi, Kwon-Hue;Kim, Han-Nah;Kim, Soo-Young;Kim, Young-Il
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.110-113
    • /
    • 2012
  • We propose a very-low-complexity lattice-reduction (LR) algorithm for multi-input multi-output detection in time-varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the lattice transformation matrices during the LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. As the Doppler frequency decreases, the complexity reduction efficiency becomes more significant.

Balanced bitrate control of multiple videos in transcoding for multi-view service

  • Gankhuyag, Ganzorig;Choe, Yoonsik
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2015
  • In this paper, a balanced bitrate control in transcoding process based on video complexity measure for multi-view system which simultaneously shows multiple channels or video contents in single screen, is proposed. In order to consider the total quality of multiple video streams, the proposed algorithm reduces the complexity of multiple video stream and video quality differences at the same time by controlling bitrates of each stream by weighting when they are stitched for single screen. For the measure of complexity and quality differences between video streams, two different data: histogram of macroblock type and bitrate for each stream are used. The experimental result indicates that proposed algorithm decreases fluctuation of quality difference between videos in the multi-view system.

A Hybrid Texture Coding Method for Fast Texture Mapping

  • Cui, Li;Kim, Hyungyu;Jang, Euee S.
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2016
  • An efficient texture compression method is proposed based on a block matching process between the current block and the previously encoded blocks. Texture mapping is widely used to improve the quality of rendering results in real-time applications. For fast texture mapping, it is important to find an optimal trade-off between compression efficiency and computational complexity. Low-complexity methods (e.g., ETC1 and DXT1) have often been adopted in real-time rendering applications because conventional compression methods (e.g., JPEG) achieve a high compression ratio at the cost of high complexity. We propose a block matching-based compression method that can achieve a higher compression ratio than ETC1 and DXT1 while maintaining computational complexity lower than that of JPEG. Through a comparison between the proposed method and existing compression methods, we confirm our expectations on the performance of the proposed method.

Scalable Interframe Wavelet Coding with Low Complex Spatial Wavelet Transform

  • Kim, Won-Ha;Jeong, Se-Yoon;Kim, Kyu-Heon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the decoding process associated with interframe wavelet coding, the inverse wavelet transform requires high computational complexity. However, as video technology starts to pervade all aspects of our lives, decoders are becoming required in various devices such as PDAs, notebooks, PCs, and set-top boxes. Therefore, a decoder's complexity needs to be adapted to the processor's computational power, and consequently a low-complexity codec is also required for scalable video coding. In this paper, we propose a method of controlling and lowering the complexity of the spatial wavelet transform while sustaining the same coding efficiency as that currently afforded. In addition, the proposed method may alleviate the ringing effect for slowly changing image sequences.

  • PDF

Low-Complexity Non-Iterative Soft-Decision BCH Decoder Architecture for WBAN Applications

  • Jung, Boseok;Kim, Taesung;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.488-496
    • /
    • 2016
  • This paper presents a low-complexity non-iterative soft-decision Bose-Chaudhuri-Hocquenghem (SD-BCH) decoder architecture and design technique for wireless body area networks (WBANs). A SD-BCH decoder with test syndrome computation, a syndrome calculator, Chien search and metric check, and error location decision is proposed. The proposed SD-BCH decoder not only uses test syndromes, but also does not have an iteration process. The proposed SD-BCH decoder provides a 0.75~1 dB coding gain compared to a hard-decision BCH (HD-BCH) decoder, and almost similar coding gain compared to a conventional SD-BCH decoder. The proposed SD-BCH (63, 51) decoder was designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed non-iterative SD-BCH decoder using a serial structure can lead to a 75% reduction in hardware complexity and a clock speed 3.8 times faster than a conventional SD-BCH decoder.

An Automated Process Planning System for Blanking or Piercing of Irregular-Shaped Sheet Metal Products (ll) (불규칙한 형상의 박판제품에 관한 블랭킹 및 피어싱용 공정설계 시스템(II))

  • Choi, J.C.;Kim, B.M.;Kim, C.;Kim, J.H.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.39-48
    • /
    • 1997
  • This paper describes the process planning system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. The process planning system is designed by considering several factors, such as the complexity of blank geometry, production feasibility of products, and punch profile complexity. Therefore this system which was implemented production feasibility check and strip layout module can carry out a process planning considering a production feasibility area of both internal and external features, a dimension of blanked hole, a coner and a fillet radius for irregualrly shaped sheet metal products and generate the strip layout in graphic froms. Knowledges for process planning are extracted from plasticity theories, handbooks, relevant references and empirical know- hows of experts in blanking companies. This provides powerful capabilities for process planning system of irregularly shaped sheet metal products.

  • PDF

Effects of Cultural Difference and Task Complexity on Team Interaction Process (팀 구성원들의 문화적 이질성과 과업복잡성이 팀 상호작용 프로세스에 미치는 영향)

  • Nam, Chang-S.;Thomas, Krystal
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.7-16
    • /
    • 2006
  • Although several theories and models have been proposed to explain the effects of cultural differences in team decision making, many aspects of team decision-making in multi-cultural contexts such as team performance, team communication, and team cognition still remain unclear. In particular, little attention has paid to the empirical studies on team processes multi-cultural team members use to interact with each other to accomplish the task in different task environments. To investigate the effects of culture and task characteristics on team decision making behavior in multi-cultural contexts, this study compared culturally homogenous and heterogeneous groups in the context of logistics decision making. Results of the study showed that cultural difference and task complexity may affect team performance as well as team interaction process to varying degree.

A Modeling Process of Equivalent Terrains for Reduced Simulation Complexity in Radar Scene Matching Applications

  • Byun, Gangil;Hwang, Kyu-Young;Park, Hyeon-Gyu;Kim, Sunwoo;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • This study proposes a modeling process of equivalent terrains to reduce the computational load and time of a full-wave electromagnetic (EM) simulation. To verify the suitability of the proposed process, an original terrain model with a size of $3m{\times}3m$ is equivalently quantized based on the minimum range resolution of a radar, and the radar image of the quantized model is compared with that of the original model. The results confirm that the simulation time can be reduced from 407 hours to 162 hours without a significant distortion of the radar images, and an average estimation error of the quantized model (20.4 mm) is similar to that of the original model (20.3 mm).

A study on the techniques of large scale chemical process system analysis (화학공정에 있어서의 대규모공정 해석방법)

  • 조인호;문장호;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.560-565
    • /
    • 1986
  • For the control of chemical process, optimal value of the process should be known at first. And process simulation is the previous step of optimal value calculation. However it is not a simple work to analyze chemical process system. Especially for the large scale chemical process system, many difficulties such as non-linearity and complexity caused by recycle streams should be overcome. In this paper, three strategies of large scale chemical process analysis were explained and discussed with case studies.

  • PDF

Fast Macroblock Mode Selection Algorithm for B Frames in Multiview Video Coding

  • Yu, Mei;He, Ping;Peng, Zongju;Zhang, Yun;Si, Yuehou;Jiang, Gangyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.408-427
    • /
    • 2011
  • Intensive computational complexity is an obstacle of enabling multiview video coding for real-time applications. In this paper, we present a fast macroblock (MB) mode selection algorithm for B frames which are based on the computational complexity analyses between the MB mode selection and reference frame selection. Three strategies are proposed to reduce the coding complexity jointly. First, the temporal correlation of MB modes between current MB and its temporal corresponding MBs is utilized to reduce computational complexity in determining the optimal MB mode. Secondly, Lagrangian cost of SKIP mode is compared with that of Inter $16{\times}16$ modes to early terminate the mode selection process. Thirdly, reference frame correlation among different Inter modes is exploited to reduce the number of reference frames. Experimental results show that the proposed algorithm can promote the encoding speed by 3.71~7.22 times with 0.08dB PSNR degradation and 2.03% bitrate increase on average compared with the joint multiview video model.