• Title/Summary/Keyword: Problems

Search Result 56,718, Processing Time 0.078 seconds

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Effect of Hydrogen Peroxide Enema on Recovery of Carbon Monoxide Poisoning (과산화수소 관장이 급성 일산화탄소중독의 회복에 미치는 영향)

  • Park, Won-Kyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.53-63
    • /
    • 1986
  • Carbon monoxide(CO) poisoning has been one of the major environmental problems because of the tissue hypoxia, especially brain tissue hypoxia, due to the great affinity of CO with hemoglobin. Inhalation of the pure oxygen$(0_2)$ under the high atmospheric pressure has been considered as the best treatment of CO poisoning by the supply of $0_2$ to hypoxic tissues with dissolved from in plasma and also by the rapid elimination of CO from the carboxyhemoglobin(HbCO). Hydrogen peroxide $(H_2O_2)$ was rapidly decomposed to water and $0_2$ under the presence of catalase in the blood, but the intravenous administration of $H_2O_2$ is hazardous because of the formation of methemoglobin and air embolism. However, it was reported that the enema of $H_2O_2$ solution below 0.75% could be continuously supplied $0_2$ to hypoxic tissues without the hazards mentioned above. This study was performed to evaluate the effect of $H_2O_2$ enema on the elimination of CO from the HbCO in the recovery of the acute CO poisoning. Rabbits weighting about 2.0 kg were exposed to If CO gas mixture with room air for 30 minutes. After the acute CO poisoning, 30 rabbits were divided into three groups relating to the recovery period. The first group T·as exposed to the room air and the second group w·as inhalated with 100% $0_2$ under 1 atmospheric pressure. The third group was administered 10 ml of 0.5H $H_2O_2$ solution per kg weight by enema immediately after CO poisoning and exposed to the room air during the recovery period. The arterial blood was sampled before and after CO poisoning ana in 15, 30, 60 and 90 minutes of the recovery period. The blood pH, $Pco_2\;and\;Po_2$ were measured anaerobically with a Blood Gas Analyzer and the saturation percentage of HbCO was measured by the Spectrophotometric method. The effect of $H_2O_2$ enema on the recovery from the acute CO poisoning was observed and compared with the room air group and the 100% $0_2$ inhalation group. The results obtained from the experiment are as follows: The pH of arterial blood was significantly decreased after CO poisoning and until the first 15 minutes of the recovery period in all groups. Thereafter, it was slowly increased to the level of the before CO poisoning, but the recovery of pH of the $H_2O_2$ enema group was more delayed than that of the other groups during the recovery period. $Paco_2$ was significantly decreased after CO poisoning in all groups. Boring the recovery Period, $Paco_2$ of the room air group was completely recovered to the level of the before CO Poisoning, but that of the 100% $O_2$ inhalation group and the $H_2O_2$ enema group was not recovered until the 90 minutes of the recovery period. $Paco_2$ was slightly decreased after CO poisoning. During the recovery Period, it was markedly increased in the first 15 minutes and maintained the level above that before CO Poisoning in all groups. Furthermore $Paco_2$ of the $H_2O_2$ enema group was 102 to 107 mmHg and it was about 10 mmHg higher than that of the room air group during the recovery period. The saturation percentage of HbCO was increased up to the range of 54 to 72 percents after CO poisoning and in general it was generally diminished during the recovery period. However in the $H_2O_2$ enema group the diminution of the saturation percentage of HbCO was generally faster than that of the 100% $O_2$ inhalation group and the room air group, and its diminution in the 100% $O_2$ inhalation group was also slightly faster than that of the room air group at the relatively later time of the recovery period. In conclusion, the enema of 0.5% $H_2O_2$ solution is seems to facilitate the elimination of CO from the HbCO in the blood and increase $Paco_2$ simultaneously during the recovery period of the acute CO poisoning.

  • PDF

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Investigation of Poultry Farm for Productivity and Health in Korea (한국에 있어서 양계장의 실태와 닭의 생산성에 관한 조사(위생과 질병중심으로))

  • 박근식;김순재;오세정
    • Korean Journal of Poultry Science
    • /
    • v.7 no.2
    • /
    • pp.54-76
    • /
    • 1980
  • A survey was conducted to determine the status of health and productivity of poultry farms in Korea. Area included Was Kyunggido where exist nearly 50% of national poultry population. From this area, 41 layer and 34 broiler farms covering 21 Countries were selected randomly for the survey. When farms were divided in the operation size, 95.1% of layer and 82.3% of broiler farms were classified as business or industrial level while the rest were managed in a small scale as part time job. Generally layer farms had been established much earlier than broiler farms. Geographically 10.7% of layer farms were sited near the housing area such as field foreast and rice field. No farms were located near the seashore. The distance from one farm from the other was very close, being 80% of the farms within the distance of 1km and as many as 28% of the farms within loom. This concentrated poultry farming in a certain area created serious problems for the sanitation and preventive measures, especially in case of outbreak of infectious diseases. Average farm size was 5,016${\times}$3.3㎡ for layers and 1,037${\times}$3.3㎡ for broilers. 89.5% of layer ana 70.6% of broiler farms owned the land for farming while the rest were on lease. In 60% of layer farms welters were employed for farming while in the rest their own labour was used. Majority of farms were equipped poorly for taking necessary practice of hygiene and sanitation. The amount of disinfectant used by farms was considerably low. As many as 97.6% of lave. farms were practised with Newcastle(ND) and fowl pox(F$.$pox) vaccine, whereas only 43.6% and 5.1% of broiler farms were practised with ND and F$.$pox vaccine, respectively. In 17-32.7% of farms ND vaccine was used less than twice until 60 days of age and in only 14.6% of farms adult birds were vaccinated every 4months. Monthly expense for preventive measures was over 200,000W in 32% of farms. Only 4.9-2.7% of vaccine users were soaking advice from veterinarians before practising vaccination, 85% of the users trusted the efficacy of the vaccines. Selection of medicine was generally determined by the farm owner rather than by veterinarans on whom 33.3% of farms were dependant. When diseases outbroke, 49.3% of farms called for veterinary hospital and the rest were handled by their own veterinarians, salesmen or professionals. Approximately 70% of farms were satisfied with the diagnosis made by the veterinarians. Frequency of disease outbreaks varied according to the age and type of birds. The livabilities of layers during the period of brooding, rearing ana adultwere 90.5, 98.9 and 75.2%, respectively while the livalibility of broilers until marketing was 92.2%. In layers, average culling age, was 533.3 day and hen housed eggs were 232.7. Average feed conversion rates of layers and broilers were 3.30 and 2.48, respectively. Those figures were considerably higher than anticipated but still far lower than those in developed countries.

  • PDF

Combined Modality Therapy with Selective Bladder Preservation for Muscle Invading Bladder Cancer (침윤성 방광암 환자에서 방광 보존 치료)

  • Youn Seon Min;Yang Kwang Mo;Lee Hyung Sik;Hur Won Joo;Oh Sin Geun;Lee Jong Cheol;Yoon Jin Han;Kwon Heon Young;Jung Kyung Woo;Jung Se Il
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.237-244
    • /
    • 2001
  • Purpose : To assess the tolerance, complete response rate, bladder preservation rate and survival rate in patients with muscle-invading bladder cancer treated with selective bladder preservation protocol. Method and Materials : From October 1990 to June 1998, twenty six patients with muscle-invading bladder cancer (clinical stage T2-4, N0-3, M0) were enrolled for the treatment protocol of bladder preservation. They were treated with maximal TURBT (transurethral resection of bladder tumor) and 2 cycles of MCV chemotherapy (methotrexate, crisplatin, and vinblastine) followed by $39.6\~45\;Gy$ pelvic irradiation with concomitant cisplatin. After complete urologic evaluation (biopsy or cytology), the patients who achieved complete response were planed for bladder preservation treatment and treated with consolidation cisplatin and radiotherapy (19.8 Gy). The patients who had incomplete response were planed to immediate radical cystectomy. If they refused radical cystectomy, they were treated either with TURBT followed by MCV or cisplatin chemotherapy and radiotherapy. The median follow-up duration is 49.5 months. Results : The Patients with stage T2-3a and T3b-4a underwent complete removal of tumor or gross tumor removal by TURBT, respectively. Twenty one out of 26 patients $(81\%)$ successfully completed the protocol of the planned chemo-radiotherapy. Seven patients had documented complete response. Six of them were treated with additional consolidation cisplatin and radiotherapy. One patient was treated with 2 cycles of MCV chemotherapy due to refusal of chemo-radiotherapy. Five of 7 complete responders had functioning tumor-free bladder. Fourteen patients of incomplete responders were further treated with one of the followings : radical cystectomy (1 patient), or TURBT and 2 cycles of MCV chemotherapy (3 patients), or cisplatin and radiotherapy (10 patients). Thirteen patients of them were not treated with planned radical cystectomy due to patients' refusal (9 patients) or underlying medical problems (4 patients). Among twenty one patients, 12 patients $(58\%)$ were alive with their preserved bladder, 8 patients died with the disease, 1 patient died of intercurrent disease. The 5 years actuarial survival rates according to CR and PR after MCV chemotherapy and cisplatin chemoradiotherapy were $80\%\;and\;14\%$, respectively (u=0.001). Conclusion : In selected patients with muscle-invading bladder cancer, the bladder preservation could be achieved by MCV chemotherapy and cisplatin chemo-radiotherapy. All patients tolerated well this bladder preservation protoco. The availability of complete TURBT and the responsibility of neoadjuvant chemotherapy and chemoradiotherapy were important predictors for bladder preservation and survival. The patients who had not achieved complete response after neoadjuvant chemotherapy and chemoradiotherapy should be immediate radical cystectomy. A randomized prospective trial might be essential to determine more accurate indications between cystectomy or bladder preservation.

  • PDF