• Title/Summary/Keyword: Problem Space

Search Result 3,980, Processing Time 0.037 seconds

A Study on Design Improvement for Smoke-Control System Using the Pressurization of the Elevator Shaft (승강로 가압 제연설비의 설계개선에 관한 연구)

  • Kim, Il-Young;Kim, Kyung-Jin;Hong, Ji-Hwan;Kwon, Chang-Hee;Yoo, Chul-Kwon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.74-83
    • /
    • 2019
  • In the U.S., the pressurization of elevator shaft was developed in 1972 to allow vulnerable people, such as the elderly and weak who could not use escape stairs in case of fire, to evacuate. It is an advantage in terms of space saving by not using vertical ducts. This study drew the problem of the pressurization of elevator shaft based on the existing domestic patents and proposed improvements. The smoke control volume calculation method is proposed by using vertical modeling. Leakage gaps in elevator doors need to be reviewed through experimental data or actual data. The evacuation floor was divided, the openings in the elevator machine room were automatically closed to the fire signal and the relief damper was installed to improve the performance. The improved method functions as the smoke control damper supplying the air flow rather than maintaining the differential pressure. To increase reliability of the research results, the procedure was performed to verify by using Contam.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

Effective address assignment method in hierarchical structure of Zigbee network (Zigbee 네트워크 계층 구조에서의 효율적인 주소 할당 방법)

  • Kim, Jae-Hyun;Hur, Soo-Jung;Kang, Won-Sek;Lee, Dong-Ha;Park, Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.20-28
    • /
    • 2007
  • Zigbee sensor network base on IEEE802.15.4 has local address of 2 byte on transmit packet data which is pick up the address for each sensor node. Sensor network is requested low power, low cost, many nodes at hues physical area. There for Zigbee is very good solution supporting for next Ubiquitous generation but the Zigbee sensor network has address allocation problem of each sensor node. Is established standard from Zigbee Alliance, to the address allocation method uses Cskip algorithm. The Cskip algorithm use the hazard which allocates an address must blow Hop of the maximum modification and child node number. There is to address allocation and from theoretically it will be able to compose a personal 65536 sensor nodes only actual with concept or space, only 500 degree will be able to compose expansion or the low Zigbee network. We proposed an address allocation method using coordinate value for Zigbee sensor network.

A Prime Number Labeling Based on Tree Decomposition for Dynamic XML Data Management (동적 XML 데이터 관리를 위한 트리 분해 기반의 소수 레이블링 기법)

  • Byun, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.169-177
    • /
    • 2011
  • As demand for efficiency in handling dynamic XML data grows, new dynamic XML labeling schemes have been researched. The key idea of the dynamic XML labeling scheme is to find ancestor-descendent-sibling relationships and to minimize memory space to store total label, response time and range of relabeling incurred by update operations. The prime number labeling scheme is a representative scheme which supports dynamic XML documents. It determines the ancestor-descendant relationships between two elements by a simple divisibility test of labels. When a new element is inserted into the XML data using this scheme, it does not change the label values of existing nodes. However, since each prime number must be used exclusively, labels can become significantly large. Therefore, in this paper, we introduce a novel technique to effectively reduce the problem of label overflow. The suggested idea is based on tree decomposition. When label overflow occurs, the full tree is divided into several sub-trees, and nodes in each sub-tree are separately labeled. Through experiments, we show the effectiveness of our scheme.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song;Lee, Hyung-Woo;Park, Chan-Bae;Han, Kyung-Hee;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1610-1615
    • /
    • 2007
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF

Visibility Measurement in an Atmospheric Environment Simulation Chamber

  • Tai, Hongda;Zhuang, Zibo;Jiang, Lihui;Sun, Dongsong
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.186-195
    • /
    • 2017
  • Obtaining accurate visibility measurements is a common atmospheric optical problem, and of vital significance to civil aviation. To effectively evaluate and improve the accuracy of visibility measurements, an outdoor atmospheric simulation chamber with dimensions of $1.8{\times}1.6{\times}55.7m^3$ was constructed. The simulation chamber could provide a relatively homogeneous haze environment, in which the visibility varied from 10 km to 0.2 km over 5 hours. A baseline-changing visibility measurement system was constructed in the chamber. A mobile platform (receiver) was moved from 5 m to 45 m, stopping every 5 m, to measure and record the transmittance. The total least-squares method was used to fit the extinction coefficient. During the experiment conducted in the chamber, the unit weight variance was as low as $1.33{\times}10^{-4}$ under high-visibility conditions, and the coefficient of determination ($R^2$) was as high as 0.99 under low-visibility conditions, indicating high stability and accuracy of the system used to measure the extinction coefficients and strong consistency between repeated measurements. A Grimm portable aerosol spectrometer (PAS) was used to record the aerosol distribution, and then Mie theory was used to calculate the extinction coefficients. The theoretical results were found to be consistent with the measurements and exhibited a positive correlation, although they were higher than the measured values.

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

A Search for Low Surface Brightness Dwarf Satellite Galaxies in Low Density Environments Using IMSNG

  • Lim, Gu;Im, Myungshin;Kim, Jisu;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2018
  • Searching for low surface brightness (LSB) dwarf galaxies in low density environments (isolated and group) can help us resolve the discrepancy between observation and theory known as the 'missing satellite' problem. They are also important to study the evolution of low mass galaxies in these environments. Although the number of dwarfs in such environments is rapidly increasing in many recent studies, it is still not easy to characterize their general properties. Motivated by this, we present preliminary results of our search for LSB dwarf galaxies around 60 nearby galaxies (D<50Mpc) using deep optical images. Imaging data from Maidanak Astronomical Observatory (MAO) in Uzbekistan as a part of Intensive Monitoring Survey of Nearby Galaxies (IMSNG; Im in prep.) and other archival data are used to find previously unknown LSB dwarf galaxies. Extended LSB sources (central surface brightness ${\mu}_0$ > $23mag/arcsec^2$) are first selected in the ${\mu}_0$ - magnitude plane (Rines & Geller 2008). The dwarf galaxy candidates are chosen by visual inspection. We discuss whether these candidates are actual satellite galaxies, by measuring the projected number densities in group environments and in the field. Also, their structural and photometric properties are compared with those of previously discovered dwarf galaxies in the literature.

  • PDF