• Title/Summary/Keyword: Probiotic product design

Search Result 4, Processing Time 0.016 seconds

Quality and Probiotic Lactic Acid Bacteria Diversity of Rabbit Meat Bekasam-Fermented Meat

  • Wulandari, Eka;Yurmiati, Husmy;Subroto, Toto;Suradi, Kusmajadi
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.362-376
    • /
    • 2020
  • Rabbit meat bekasam is a traditional fermentation product from Indonesia. This study aimed to determine the chemical and microbiological characteristics of rabbit meat bekasam during the fermentation process in order to isolate, characterize (in vitro and in vivo), and identify lactic acid bacteria (LAB) as the probiotic candidate. The chemical contents of bekasam on 7-day fermentation were investigated in explorative and experimental methods in a completely randomized design. A proximate analysis reported a decrease in the moisture content, fat and carbohydrate content, and an increase in protein content. Also, lactic acid content was increased from 0.48% to 1.12%, and pH was decreased from 5.3 to 4.3. Other properties indicated different values, such as bacteria (2.75×106 to 4.45×107 CFU/g), total LAB (3.82×106 to 4.67×108 CFU/g), total yeast (9.89×106 to 3.82×108 CFU/g) and total mould (4.34×101 to 4.86×103 CFU/g). The experiment produced nine LAB isolates, including two probiotics subjected to further 16S rRNA gene analysis, which indicated that Lactobacillus buchneri was the potential probiotic isolate. After being tested on BALB/c mice, L. buchneri could improve the immune system by inhibiting the growth of Coliform and Salmonella.

A Case Study on the Brand Development of Odor-reducing Feed Additives

  • Gok Mi Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.194-200
    • /
    • 2024
  • In the past, antibiotics and antimicrobial substances have been used for the purpose of promoting the growth of livestock or treating livestock, but various problems such as the presence of livestock products or resistant bacteria have emerged. Recently, regulations on the use of antibiotics have been strengthened worldwide, and probiotics are attracting attention as an alternative. Probiotic microorganisms have already been used for human use, such as intestinal abnormal fermentation, diarrhea, and indigestion. In livestock, beneficial microorganisms are increasing in use for the purpose of improving productivity, such as promoting livestock development and preventing diarrhea. Therefore, it is advisable to understand livestock probiotics in deeper and think about effective uses. The role of probiotics in the livestock sector is made with microorganisms themselves, so it is a substance that promotes livestock growth and improves feed efficiency by settling in the intestines of livestock, suppressing the growth of other harmful microorganisms, helping digestion and absorption of ingested feed, and helping to synthesize other nutrients. There is a need for a probiotic that suppresses intestinal bacteria by supplying probiotics used as a means to minimize the effects of stress in livestock management, thereby suppressing disease outbreaks by maintaining beneficial microorganisms and suppressing pathogenic microorganisms. The purpose of this paper is to develop a brand of feed additive probiotics to improve health conditions due to increased feed intake, improve the efficiency of use of feed nutrients, inhibit the decomposition and production of toxic substances, increase immunity, reduce odor in livestock, and improve the environment. We investigated and analyzed feed additive probiotics already on the market, and developed the naming and logo of suitable feed additive probiotic brands in livestock. We hoped that the newly developed product will be used in the field and help solve problems in the livestock field.

Production of spherical granule type yogurt with improving convenience and preservation (편리성 및 저장성이 증진된 구형과립 요구르트 제조)

  • Shin, Myung-Gon
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • Yogurt contains many microorganisms that are beneficial to human health, and is a probiotic that supplies many nutrients such as calcium and protein. It is difficult to safety preserve for a long time because it possesses a high content of water. To address this problem, powdered "instant" yogurt has been developed, but it has flaws low flowability and solubility. Therefore, yogurt was granulated using a fluidized bed granulator to increase flowability and solubility. The fluidized bed granulator was designed by using response surface methodology (RSM), whose variables were feeding rate (FR), atomization air pressure (AP) and product temperature (PT). After being granulated, the yogurt was analyzed for yield and lactic acid bacteria count. The maximum yield of yogurt granules was 79.42%, at FR of 0.54 mL/min, AP of 2.64 kPa, and PT of $58.18^{\circ}C$, and the colony count for lactic acid bacteria was more than $6log^{10}\;CFU/g$. Therefore, spherical granulation of yogurt using a fluidized bed granulator could be used for making convenient probiotic products with improved flowability and solubility.

Comparison of the Effect of Green Tea By-product and Green Tea Probiotics on the Growth Performance, Meat Quality, and Immune Response of Finishing Pigs

  • Ko, S.Y.;Bae, I.H.;Yee, S.T.;Lee, S.S.;Uuganbayar, D.;Oh, J.I.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1486-1494
    • /
    • 2008
  • The objective of this experiment was to compare the effects of green tea by-product and green tea probiotics on the growth performance, meat quality and immune response of finishing pigs. A total of 72 crossbred "Landrace$\times$Yorkshire" finishing pigs with an average of 76 kg body weight were assigned to 4 dietary treatments in a completely randomized design. Each treatment had 3 replications with 6 pigs per replication. The four dietary treatments were control, antibiotics (control diet with 0.003% chlortetracycline added), and diets containing 0.5% green tea by-product or 0.5% green tea probiotic supplementation. Weight gain was increased in 0.5% green tea probiotics treatment compared to others, but there was no significant difference (p>0.05). The incorporation of 0.5% green tea probiotics to diets reduced the feed conversion ratio in finishing pigs (p>0.05). The incorporation of 0.5% green tea by-product into the pig diet reduced the crude protein and fat contents of the meat (p>0.05). Pigs fed diets containing 0.5% green tea probiotic supplementation had lowered meat TBA values compared to those fed 0.5% green tea by-product (p<0.05). The proliferation of spleen cells stimulated with Con A (concanavalin: 0.1, 0.3, and $1.0{\mu}g/ml$) significantly increased with 0.5% green tea by-product treatment compared to antibiotic treatment (p<0.05), but was significantly decreased in 0.5% green tea probiotics treatment compared to the antibiotic treatment (p<0.05). When stimulated with $1.0{\mu}g/ml$ Con A, splenocyte production of IL-6 from pigs treated with 0.5% green tea by-product or green tea probiotics was significantly increased compared to the antibiotic treatment group (p<0.05). Splenocyte production of TNF-${\alpha}$ after treatment with $1.0{\mu}g/ml$ Con A was significantly higher following 0.5% green tea probiotics treatment (p<0.05), while TNF-${\alpha}$ production after $10.0{\mu}g/ml$ LPS (lipopolysaccharide) was significantly higher in the 0.5% antibiotic treatment group (p<0.05).