• Title/Summary/Keyword: Probiotic mixture

Search Result 45, Processing Time 0.042 seconds

Probiotic Mixture KF Attenuates Age-Dependent Memory Deficit and Lipidemia in Fischer 344 Rats

  • Jeong, Jin-Ju;Kim, Kyung-Ah;Ahn, Young-Tae;Sim, Jae-Hun;Woo, Jae-Yeon;Huh, Chul-Sung;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1532-1536
    • /
    • 2015
  • To investigate the memory-enhancing effect of lactic acid bacteria, we selected the probiotic mixture KF, which consisted of Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 (1 × 1011 CFU/g of each strain), and investigated its antilipidemic and memoryenhancing effects in aged Fischer 344 rats. KF (1 × 1010 CFU/rat/day), which was administered orally once a day (6 days per week) for 8 weeks, significantly inhibited age-dependent increases of blood triglyceride and reductions of HDL cholesterol (p < 0.05). KF restored agereduced spontaneous alternation in the Y-maze task to 94.4% of that seen in young rats (p < 0.05). KF treatment slightly, but not significantly, shortened the escape latency daily for 4 days. Oral administration of KF restored age-suppressed doublecortin and brain-derived neurotrophic factor expression in aged rats. Orally administered KF suppressed the expression of p16, p53, and cyclooxygenase-2, the phosphorylation of Akt and mTOR, and the activation of NF-κB in the hippocampus of the brain. These findings suggest that KF may ameliorate age-dependent memory deficit and lipidemia by inhibiting NF-κB activation.

Effects of Dietary Prebiotics and Probiotics on Growth, Immune Response, Anti-oxidant Capacity and Some Intestinal Bacterial Groups of the Red Seabream Pagrus major (사료 내 Prebiotic과 Probiotics의 첨가가 참돔(Pagrus major)의 성장, 면역력, 항산화력, 장내 미생물 조성 변화에 미치는 영향)

  • Jongho Lim;Gunho Eom;Choong Hwan Noh;Kyeong-jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.89-98
    • /
    • 2023
  • We evaluated the effects of prebiotic (mannan oligosaccharides, Mos) and probiotic diet supplements on growth performance, innate immunity, antioxidant activity, and intestinal changes in the microbial flora of red seabream Pagrus major. A basal diet (Con) was formulated to meet the nutrient requirement of red seabream. The dietary starch in Con was replaced with 0.6% Mos, Lactobacillus plantarum, Bacillus subtilis, B. licheniformis and probiotic mixture (labeled as Mos, Pro-LP, Pro-BS, Pro-BL and Pro-Mix, respectively). We stocked 450 fish in 18 polypropylene tanks (400 L) in triplicate groups per dietary treatment. The fish were fed one of the diets twice (08:30, 18:30 h) a day for 63 days. Lysozyme activity was significantly higher in all the supplemented groups than that of the Con group. The immunoglobulin level of Pro-Mix, anti-protease activity of Pro-BL, and glutathione peroxidase and superoxide dismutase activity of Pro-BS, Pro-BL and Pro-Mix groups were significantly higher than those of the Con group. The ratio of total Vibrio/heterotrophic marine bacteria counts was significantly lower in Pro-LP, Pro-BL and Pro-Mix groups than that of the Con group. Therefore, dietary supplementation of Mos and probiotics to improves immune response and antioxidant enzyme activity and inhibits Vibrio bacteria in the intestine.

Effects of Dietary Prebiotic, Probiotics and Synbiotic on Growth, Nonspecific Immunity, Antioxidant Capacity, Intestinal Microbiota and Antiinflammatory Activity of Hybrid Grouper (Epinephelus akaara ♀×Epinephelus lanceolatus ♂) (사료 내 Prebiotic, Probiotics와 Synbiotic의 첨가가 대왕붉바리(Epinephelus akaara ♀×Epinephelus lanceolatus ♂)의 성장, 비특이적 면역력, 항산화능, 장내 미생물 조성과 항염증에 미치는 영향)

  • Wonhoon Kim;Jongho Lim;Minjoo Kang;Choong Hwan Noh;Kyeong-Jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.850-860
    • /
    • 2023
  • The effects of dietary mannan oligosaccharides, Lactobacillus plantarum, Bacillus subtilis, and Bacillus licheniformis supplementation on hybrid grouper Epinephelus akaara ♀×Epinephelus lanceolatus ♂ were evaluated. The fish were fed a basal diet and five other diets consisting of 0.6% mannan oligosaccharides, L. plantarum, B. subtilis, and B. licheniformis and mixture of each 0.15% prebiotic and all the probiotics (designated as MOS, LP, BS, BL, and SYN) for 56 days. Growth performance and feed utilization showed no significant differences among all experimental groups. Lipid level of whole-body was significantly high in MOS and BL groups. Plasma aspartate aminotransferase was significantly low in BL and SYN groups. Nitro-blue tetrazolium, lysozyme and anti-protease, and glutathione peroxidase in BS, SYN, and all probiotic groups, respectively, were significantly high. Intestinal Vibrio bacteria was significantly low in all probiotic and SYN groups. Gene expression of interleukin-1β and interleukin-10 in SYN group; transforming growth factor β2 in MOS and BS groups, toll-like receptor 2-2 in BS and BL groups; and C-type lectin in MOS, LP and SYN groups were significantly upregulated. Our findings indicate that mannan oligosaccharides, L. plantarum, B. subtilis, and B. licheniformis could improve innate immunity, antioxidant capacity, anti-inflammation, and intestinal microbiota of hybrid grouper.

A Probiotic Preparation Duolac-Gold Ameliorates Dextran Sulphate Sodium-induced Mouse Colitis by Downregulating the Expression of IL-6

  • Yoon, Hyunho;Yoon, Yeo-Sang;Kim, Min-Soo;Chung, Myung-Jun;Yum, Do-Young
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Probiotics are live microorganisms that confer a health benefit on the host. Duolac-Gold is a mixture of seven probiotic bacteria containing three species of Bifidobacteria, two species of Lactobacillus, and Streptococcus thermophilus. The aim of this study was to assess the anti-inflammatory effects of Duolac-Gold in an inflammatory bowel disease (IBD) mouse model. IBD was induced by administering 1.5% dextran sulfate sodium (DSS) for 10 days. After induction of DSS-induced colitis, Duolac-Gold was orally administered at three different concentrations. Interestingly, Duolac-Gold treatment accelerated IBD healing, and anti-inflammatory activity was assessed by weight loss, length of the colon, and a microscopic damage score by histology. The expression of inflammatory related cytokines was measured in colon tissues and serum. Of these cytokines, the expression of interleukin-6 decreased remarkably after Duolac-Gold treatment. Taken together, these results suggest that Duolac-Gold treatment is effective in IBD healing by regulating IL-6.

Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation

  • Jung, Ye-Jin;Kim, Hyun-Seok;Jaygal, Gunn;Cho, Hye-Rin;Lee, Kyung bae;Song, In-bong;Kim, Jong-Hoon;Kwak, Mi-Sun;Han, Kyung-Ho;Bae, Min-Jung;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.612-620
    • /
    • 2022
  • Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.

Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period

  • Saleem, A.M.;Zanouny, A.I.;Singer, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.523-530
    • /
    • 2017
  • Objective: Two experiments were conducted to evaluate the effects on growth performance, digestibility, and blood metabolites of lambs during pre- and post-weaning period of inclusion of a commercial probiotic (PRO) containing a mixture of two strains of Pediococcus, Pediococcus acidilactici ($1{\times}10^6$ colony-forming unit [cfu]/g) and Pediococcus pentosaceus ($1.3{\times}10^6cfu/g$), with dextrose as the carrier compound compared to a diet based on concentrate mixture and wheat straw. Methods: In exp. 1, 24 male lambs of about $15{\pm}2.6$ d age and initial body weight (BW) of $5.52{\pm}0.6kg$ were randomly allocated into three groups. One group received control diet without additives, and remainders received control diet supplemented with 0.5 or 1 g PRO/lamb/d. Daily feed intake and biweekly BW were recorded. In exp. 2, five lambs, (initial $BW=29.72{\pm}1.15kg$, $age=6.54{\pm}0.32mo$) were used as experimental animals in a digestion trial. They were fed the same diets as in Exp. 1. Results: The supplementation of PRO did not result in any significant differences in milk intake, average daily gain (ADG), or total gain between treatments during the pre-weaning period. Total dry matter intake tended to be greater (p = 0.07) with addition of PRO in the post-weaning diets. During post-weaning phase, the final BW, ADG, total gain, and feed conversion ratio of the lambs receiving PRO treatments tended to be greater ($p{\leq}0.10$) than the control group. Addition of PRO in post-weaning diet decreased ($p{\leq}0.01$) blood urea and cholesterol concentrations. With the exception of ether extract digestibility, all nutrients digestibility were improved with inclusion PRO in the post-weaning diets. Conclusion: Lambs that received PRO in post-weaning diet appeared to show a better performance than lambs in pre-weaning period. Addition of the probiotic in the post-weaning diet trended towards improved dry matter intake, growth performance, feed conversion ratio, and nutrients digestibility.

Effects of the Oral Administration of a Probiotic Combination on the Expression of Cytokine and the Histopathology of the Large Intestine in an Animal Model of Enteritis

  • Seo, Jae-Gu;Chung, Myung-Jun;Lee, Hyun-Gi
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • It is known that lactic-acid bacteria (LAB) helps keeping the intestine healthy and to enhance its immunologic competence. In addition, it is known to control the composition of the enterobacteria and the intestinal inflammatory reaction by inducing immunological enhancement. This study was performed, in a mouse model, to test the treatment and preventive effects of LAB of inflammatory bowel disease (IBD), which was induced by a blend of LAB-administering trinitrobenzene sulfonic acid (TNBS). To obtain the animal model of IBD, 2% TNBS was rectally administered once to a five-week-old male Balbc/J mouse. A probiotic combination was administered to the prevention group five times a week for eight weeks before the inducement of enteritis, and the mixture was administered to the treatment group five times a week, after the administration of TNBS. The changes in the levels of the cytokines of the lymph nodes and the tissue of the large intestine were observed, both with the naked eye and with a microscope. The observation showed that the levels of inflammatory cells, infiltration, and necrosis were much lower in the LAB-administered groups than in that of the control group. In addition, the inflammatory cytokines (e.g., TNF-${\alpha}$, IL-17A) decreased in the lymph nodes and the tissues of the large intestine. The results indicated that the administration of the combination to the animal model suppressed the inflammatory cytokines in the large intestine and in the lymph nodes, which in turn suppressed the progression of colitis.

Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food

  • Sultana, Omme Fatema;Lee, Saebim;Seo, Hoonhee;Al Mahmud, Hafij;Kim, Sukyung;Seo, Ahyoung;Kim, Mijung;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.999-1010
    • /
    • 2021
  • Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ring-hydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.

Effect of Lactic Acid Bacteria on the Regulation of Blood Glucose Level in Streptozotocin-induced Diabetic Rats

  • Yeo, Moon-Hwan;Seo, Jae-Gu;Chung, Myung-Jun;Lee, Hyun-Gi
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • To identify the treatment effect of lactic acid bacteria for diabetes, the treatment effects of a single administration of acarbose (a diabetes treatment drug) or lactic acid bacteria, and the mixture of acarbose and lactic acid bacteria on diabetes in a type 1 diabetes animal model, were studied. In this study, streptozotocin was inoculated into a Sprague-Dawley rat to induce diabetes, and sham control (Sham), diabetic control (STZ), STZ and composition with live cell, STZ and composition with heat killed cell, STZ and composition with drugs (acarbose) were orally administered. Then the treatment effect on diabetes was observed by measuring the body weight, blood glucose, and serum lipid. For the histopathological examination of the pancreas, the Langerhans islet of the pancreas was observed using hematoxylin and eosin staining, and the renal cortex, outer medullar, and inner medullar were also observed. The induced diabetes decreased the body weight, and the fasting blood glucose level decreased in the lactic-acid-bacteria-administered group and the mixture-administered group. In addition, the probiotic resulted in the greatest decrease in the serum cholesterol level, which is closely related to diabetes. Also, the hematoxylin and eosin staining of the Langerhans islet showed that the reduction in the size of the Langerhans islet slowed in the lactic-acid-bacteria-administered group. The histopathological examination confirmed that the symptoms of diabetic nephropathy decreased in the group to which viable bacteria and acarbose were administered, unlike in the group to which dead bacteria was administered. The mixture of lactic acid bacteria and acarbose and the single administration of lactic acid bacteria or acarbose had treatment effects on the size of the Langerhans islet and of the kidney histopathology. Thus, it is believed that lactic acid bacteria have treatment effects on diabetes and can be used as supplements for the treatment of diabetes.

Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium longum KACC 91563

  • Song, Min-Yu;Van-Ba, Hoa;Park, Won-Seo;Yoo, Ja-Yeon;Kang, Han-Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Kim, Bu-Min;Oh, Mi-Hwa;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.981-994
    • /
    • 2018
  • The present study aimed at evaluating the utilization possibility of encapsulated probiotic Bifidobacterium longum for production of functional fermented sausages. The B. longum isolated from the feces samples of healthy Korean infants encapsulated with glycerol as a cryprotectant was used for fermented sausages production as a functional bacterial ingredient, and its effect was also compared with those inoculated with commercial starter culture (CSC). Results showed that most inoculated encapsulated B. longum (initial count, 5.88 Log CFU/g) could survive after 4 days fermentation (5.40 Log CFU/g), and approximately a half (2.83 Log CFU/g) of them survived in the products after 22 days of ripening. The products inoculated with encapsulated B. longum presented the lowest lipid oxidation level, while had higher total unsaturated fatty acid content and more desirable n-6/n-3 fatty acids than those inoculated with CSC or non-inoculated control. Moreover, the odor and taste scores in the samples made with B. longum were comparable to those in the treatment with CSC. The inoculation with the B. longum had no effects on the biogenic amine contents as well as did not cause defects in color or texture of the final products. Thus, the encapsulation could preserve the probiotic B. longum in the meat mixture, and the encapsulated B. longum could be used as a functional ingredient for production of healthier fermented meat products.