• Title/Summary/Keyword: Probe forces

Search Result 47, Processing Time 0.022 seconds

An Experimental Study on the Nano-adhesion of Octadecyltrichlorosilane SAM on the Si Surface (OTS SAM의 미소 응착 특성에 관한 실험적 연구)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.276-282
    • /
    • 2001
  • Nano adhesion between SPM (scanning probe microscope) tips and 075 (octadecyltrichlorosilane) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various conditions of relative humidity. OTS SAM was formed on Si-wafer (100) surfaces, and Si$_3$N$_4$ tips of different radius of curvature were used. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare Si-wafer. Results also showed that micro-adhesion force increased as the relative humidity and the tip radius of curvature increased. The main parameter for affecting the micro-adhesion was found absorbed humidity on the contact surface. These results were discussed with the JKR model and a capillary force caused by absorbed water.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Nano Adhesion and Friction of $DDPO_4$ and $ODPO_4$ SAM Coatings ($DDPO_4$$ODPO_4$SAM 코팅의 나노 응착 및 마찰 특성 연구)

  • ;;;Andrei Ya Grigoriev
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • Nano adhesion between SPM(scanning probe microscope) tips and DDPO$_4$(octadecylphosphoric acid ester.) and ODPO$_4$(octadecylphosphoric acid ester) SAM(self-assembled monolayer.) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. DDPO$_4$ and ODPO$_4$ SAM were formed on Ti and TiOx surfaces. Ti and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of DDPO$_4$ and ODPO$_4$ SAM surfaces were compared with those of OTS(octadecyltrichlorosilane) SAM and DLC surfaces. DDPO$_4$ and ODPO$_4$ SAM converted the Ti and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic Results also showed that tribological characteristics of DDPO$_4$ and ODPO$_4$ SAM had good properties in the adhesion, friction, wetting angle and work of adhesion. DDPO$_4$ and ODPO$_4$ SAM could be one of the candidates for the bio-MEMS elements.

Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip (미세유체 칩 내에서 유전영동 집게(Dielectrophoretic Tweezers) 를 이용한 단백질A와 면역 글로불린 G의 결합에 관한 연구)

  • Kwak, Tae Joon;Lee, Jae Woo;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The 'Dielectrophoretic Tweezers(DEP Tweezers)' can be used as a facile, economical toolkit for quantitative measurement of chemical and biological binding forces related to many biological interactions within a microfluidic device. Our experimental setup can probe the interaction between a single receptor molecule and its specific ligand. Immunoglobulin G(IgG) functionalized on polystyrene microspheres has been used to detect individual surface linked Staphylococcus protein A(SpA) molecules and to characterize the strength of the noncovalent IgG-SpA bond. It was measured and compared with the existing measurements. Measured single binding force of between Goat, Rabbit IgG and SpA were $17{\pm}7pN$, $74{\pm}16pN$. This work can be used to investigate several different ligand-receptor interactions and antigen-antibody interactions.

A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC (EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구)

  • Lee, Byung-Ho;Yi, Chung-Seub;Kim, Bo-Han;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section (단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정)

  • Oh, Chang-Min;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

Shape-dependent Adhesion and Friction on Au Nanoparticles Probed with Atomic Force Microscopy

  • Yuk, Youngji;Hong, Jong Wook;Han, Sang Woo;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.141-141
    • /
    • 2013
  • Shape control of metal nanocrystals has broad applications, including catalysis, plasmonics, and sensing. It was found that controlling the atomic arrangement on metal nanocrystal surfaces affects many properties, including the electronic dipole or work function. Tuning the surface structure of exposed facets of metal nanocrystals was enabled by shape control. We investigated the effect of shape on nanomechanical properties, including friction and adhesion forces. Two nanoparticles systems, high-index {321} and low-index {100}, were used as model nanoparticle surfaces. Scanning force microscopy was used to probe nanoscale friction and adhesion. Because of the abundant presence of high-density atomic steps and kinks, high-index faceted nanoparticles have a higher surface energy than low-index faceted cubic nanoparticles. Due to this high surface energy, high-index faceted particles have shown stronger adhesion and higher friction than low-index nanoparticles. We discuss the results in light of the differences in surface energy as well as the effect of capping layers in the measurement.

  • PDF

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Non-contact Stress Measurement in Steel Member of PSC Box Bridge Using Raman Spectroscopy (라만 형광 분광법을 이용한 PSC 박스교 인장케이블 응력측정방법 연구)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.130-134
    • /
    • 2019
  • In this paper, a laser-based non-contact load cell is newly developed for measuring forces in prestressed concrete tendons. First, alumina particles have been sprayed onto an empty load cell which has no strain gauges on it, and the layer has been used as a passive stress sensor. Then, the spectral shifts in fluorescence spectroscopy have been measured using a laser-based spectroscopic system under various force levels, and it has been found that the relation of applied force and spectral shift is linear in a lab-scale test. To validate the field applicability of the customized load cell, a full-scale prestressed concrete specimen has been constructed in a yard. During the field test, it was, however, found that the coating surface has irregular stress distribution. Therefore, the location of a probe has to be fixed onto the customized load cell for using the coating layer as a passive stress sensor. So, a prototype customized load cell has been manufactured, which consists of a probe mount on its casing. Then, by performing lab-scale uniaxial compression tests with the prototype load cell, a linear relation between compression stress and spectrum shift at a specific point where laser light had been illuminated has been detected. Thus, it has a high possibility to use the prototype load cell as a force sensor of prestressed concrete tendons.

Performance analysis of dynamic positioning system with loss of propulsion power of T/S NARA (실습선 나라호의 추진력 상실에 따른 동적위치제어시스템의 성능 분석)

  • LEE, Jun-Ho;KONG, Kyeong-Ju;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • In order for the probe to perform ocean exploration and survey research, it is necessary to adjust the position of the ship as desired by dynamic positioning system. The dynamic positioning system of T/S NARA is applied to K-POS dynamic positioning system of Kongsberg, which makes maintaining the ship's position, changing position and heading control possible. T/S NARA is not capable of dynamic positioning if one or more propulsive forces are lost with DP Level One. However, it is predicted that dynamic positioning can be achieved even at the time of missing one thrust in a good sea condition. Therefore, we want to analyze the effect of each propulsion on the performance of dynamic position system. When one of the bow thruster and azimuth thrusters lost their propulsion, maintaining the ship's position, changing position and heading control performance were compared and analyzed. If the situation occurred disable from using the bow thruster, they can not maintain ship's position. Azimuth thruster was influential for the ship's position control and bow thruster was influential in heading control. The excellent dynamic positioning performance can be achieved, considering the propulsion power that will have a impact on each situation in the future.