• 제목/요약/키워드: Probe Impedance

검색결과 148건 처리시간 0.04초

피부전류량의 화상중첩에 의한 경혈의 시각화 (Visualization of Acupoint by Image Overlapping of Skin Current)

  • 이용흠;김용진;고수복;정동명
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.563-566
    • /
    • 1999
  • The functional diagnosis instrument should be preceded first to both the accurate selection of exact acupoint and discrimination. so the measuring and stimulating method are improved to SPAC pattern to evaluate impedance existed in the body. As a result, the resistance factor between skin and probe, the dipolization of cell was reduced so that the judgement of acupoint is advanced. After extraction of optimization parameter of SPAC pattern which the high discrimination efficiency and the lowest affection on the human body is controlled by using microprocessor to enhance conviction. The discrimination efficiency was confirmed by meridian visualization system. Also mechanism of probe was improved to increase efficiency of image recognition processing. The image of discriminated acupoint with probe is obtained by using a camera, the location on the tip of probe is recognized and processed. And then these are converted to virtual color by proportional to measuring current level of scan point on skin.

  • PDF

주기적 마이크로스트립 위상 배열의 특성 해석 (Analysis of the Periodic Microstrip Phased Array Antenna)

  • 조영수;김동현이상설
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.335-338
    • /
    • 1998
  • This paper presents calculated results for the infinite phased arrays of the probe-fed rectagualr microstrip patches. A numerical model that is based on a rigorous Green's function and galerkin solutionsis is described. In an arbitrary scan plane, the input impedance and the input reflection coefficient versus the scand angle are calculated. The effects of substrate parameters on the phased arry antenna are considered. The scan blindness phenomenon due to the surface wave is observed and the input impedance bandwidth in the arbitrary scan plane is calculated.

  • PDF

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • 장해규;김대경;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

낙뢰 보호용 접지시스템 평가를 위한 고주파 접지임피던스 측정시스템의 설계 및 제작 (Design and Fabrication of High Frequency Ground Impedance Measuring System for Assessment of Grounding System for Lightning Protection)

  • 길형준;송길목;김영석;김종민;김영진
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the design and fabrication of high frequency ground impedance measuring system for assessment of grounding system for Lightning protection. The ground impedance measuring system has been designed and fabricated which makes it possible to assess the ground impedance by frequency ranges from 100 Hz to 1 MHz. The effective grounding systems having a very low impedance to electromagnetic disturbance such as lightning surges and noises in microelectronics and high-technology branches are strongly required. In order to analyze the dynamic characteristic of grounding system impedances in lightning and surge protection grounding systems, it is highly desirable to assess the ground impedances as a measure of performance of grounding system in which lightning and switching surge currents with fast rise time and high frequency flow. The measuring system is based on the variable frequency power supply and consists of signal circuit part, main control part, data acquisition and processing unit, and voltage and current probe system. The ground impedance measuring system can be used to assess grounding system during occurrence of lightning.

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

Cutoff Probe Analysis and Improvement

  • 김대웅;유신재;유광호;박민;김정형;성대진;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.142-142
    • /
    • 2011
  • Microwave diagnostics method for plasma science and engineering is vigorous research area for its good characteristics such as high sensitivity, reliability, and broad measurement spectrum from low density plasma to high density. We investigate mechanism of microwave probes (hairpin, impedance and absorbtionf probe) and apply it for interpretation of full transmitted spectrum of cutoff probe. Mechanism of the spectrum having same key roles of I-V curve of Langmuir probe is not exactly revealed yet in spite of its importance. This study elucidates physics behind it using a circuit model and E/M wave simulation. Circuit model reveals exact cut-off peak frequency taking account of a collision frequency and a plasma frequency and it enable precise diagnostics of plasma densty from low pressure to high pressre. Cut-off like peaks have been obstacle for choosing cut-off peak is analyzed by E/M simulation and one of cutoff like peaks made by probe holder used for acquire plasma density with cutoff peak applying the hairpin relation. Furthermore, phase difference method for plasma density is conducted. This method uses a single microwave frequency source and it is low-priced.

  • PDF

뇌파 탐지용 Gel-free probe 연구 (A Study on Gel-free Probe for Detecting EEG)

  • 윤대중;엄년식;정명영
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.156-166
    • /
    • 2012
  • Over the past 15 years productive BCI research programs have arisen. Current mainstream EEG electrode setups permit efficient recordings but most of electrodes has the disadventages of need for skin preparation and gel application to correctly record signals. The new gel-free probe was adapted for EEG recording and it can be fixed to the scalp with the micro needle without neuro-gel. It use standard EEG cap for wearing electrodes on scalp so it is compatible with standard EEG electrodes. A comparison between electrode characteristics is achieved by performing simultaneous recordings with the gel electrodes and gel-free probe placed in parallel scalp positions on the same anatomical regions. The quality of EEG recordings for all two types of experimental conditions is similar for gel-electrodes and gel-free probe. Subjects also reported not having special tactile sensations associated with wearing of gel-free probes. According to our results, it is expected that gel-free probe can be adapted to BCI, BMI(Brain Machine Interface), HMI(Human Machine Interface) because of its simple application and comfortable wearing process.

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권3호
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.

Broadband Characterization of Circularly Polarized Waveguide Antennas Using L-Shaped Probe

  • Fukusako, Takeshi
    • Journal of electromagnetic engineering and science
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2017
  • This paper introduces a technique to obtain the broadband characteristics of circularly polarized antennas using an L-shaped probe. A waveguide antenna is suitable for obtaining high gain and handling convenience in some applications; however, the asymmetrical structure of the L-shaped probe results in cross-polarization and frequency dependence on the field distribution of higher-order modes (HOM). In addition to the basic characteristics of a waveguide antenna with an L-shaped probe, the author discusses some techniques to reduce the HOM and cross-polarization. As a result, the 3-dB axial ratio (AR) is obtained with the fundamental mode even when the frequency is expanded to the region for HOM of TM. This reduction is mainly due to the cutoff structure to the TM mode around the short wall of the waveguide. Furthermore, some aperture modification techniques can reduce the cross-polarization in a wide range of angles in the radiation pattern. Such techniques and their mechanisms are discussed in this paper. The obtained performance shows that the proposed antennas have a wide range of angles of 3-dB AR in the radiation pattern, broadband characteristics in impedance and AR, and low variation in group velocity.

Plasma Uniformity Analysis of Inductively Coupled Plasma Assisted Magnetron Sputtering by a 2D Voltage Probe Array

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제23권4호
    • /
    • pp.161-168
    • /
    • 2014
  • A real-time monitoring of immersed antenna type inductively coupled plasma (ICP) was done with a homemade 2 dimensional voltage probe array to check the uniformity of the plasma. Measured voltage values with a high impedance voltmeter are close to the floating potential of the plasma. As the substrate carrier was moving into a magnetron sputtering plasma diffusive from a $125mm{\times}625mm$ size cathode, measured results showed reliably separation of plasma into the upper and lower empty space over the carrier. Infra red thermal imaging camera was used to observe the cross corner effect in situ without eroding a target to the end of the usage. 3 dimensional particle trace model was used to analyze the magnetron discharge's behavior.