• Title/Summary/Keyword: Probe Calibration

Search Result 165, Processing Time 0.027 seconds

Full angle range pressure coefficient maps of five-hole probe and new calibration coefficients (5공프로브의 전 각도 범위 압력계수 지도와 새로운 보정계수)

  • Kim, Jin-Gwon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1437-1448
    • /
    • 1997
  • Pressures of a five-hole probe were measured for a full range of yaw and pitch angles and complete pressure coefficient maps were obtained. Based on these maps, various features of five-hole probe pressures were revealed and new five-hole probe calibration coefficients were devised. The new calibration coefficients show non-diverging characteristics for any flow direction and one-to-one correspondence for a wide range of flow angles. These calibration coefficients expand the valid flow angle range of five-hole probe calibration by .+-.10 degrees and complement a critical defect of five-hole probe zone-division calibration method which has not been known yet. Moreover new non-diverging calibration coefficients have advantages in nulling methods, too.

Development of a Laboratory-based Calibration System for 5-Hole Probes (5공 프로브 실험실용 교정 시스템 개발)

  • Kim, Changmin;Baek, Seungchan;Ji, Changeun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.122-128
    • /
    • 2020
  • In the field of experimental fluid dynamics, the 5-hole probe is one of the most widely used tools to measure flow velocity and pressure. We hereby describe the development of an inexpensive laboratory-based flow calibration system for 5-hole probes. The system is applied to a custom L-shaped probe, and the probe performance is compared against a standard commercial probe in a custom wind tunnel. The setup allows rotation of the probe around the yaw and pitch axes. Static and total pressure values are calculated, and then calibration maps are constructed based on the yaw and pitch angles. Using these maps, errors of the custom probe are found to be ±5% for velocity magnitude and ±3° for direction, compared to the commercial probe, when both pitch and yaw angles are within 40°.

The Effect of Reynolds Number on the Calibration of a Five-Hole Probe at Low Reynolds Numbers (저 Reynolds 수 영역에서 Reynolds 수가 5공 프로우브의 보정에 미치는 영향)

  • Lee, Sang Woo;Jun, Sang Dae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.193-199
    • /
    • 2000
  • The effects of Reynolds number on the non-nulling calibration of a cone-type five-hole probe in low-speed flows have been investigated at the Reynolds numbers of $2.04{\times}10^3,\;4.09{\times}10^3$, and $6.13{\times}10^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. The result shows that each calibration coefficient, in general, is a function of the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting for the full non-nulling calibration characteristics. Due to the interference of the probe stem, the calibration coefficients have more Reynolds number sensitivity at positive pitch angles than at negative ones.

  • PDF

Calibration/Compensation of Errors of the Touch Probe (접촉식 프로브의 오차교정 및 보정기술)

  • 박희재;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2081-2087
    • /
    • 1994
  • Touch trigger probes are widely used for inspection purposed in the CMM(Coordinate meauring machine) or machine tool. The errors introduced by measurement probe are fairy systematic, thus can be calibrated and compensated properly. This paper presents a technique for the error calibration and compensation of the probe errors, which can be easily applicable to the manufacturers and users of the measurement probe. The probe coordinate system is defined for the probe error assessment, and a reference sphere ball is measured, and the probe errors are calibrated. The calibrated probe errors are represented in the 3D error map and 2D error map along probing direction. Detail algorithms for the error compensation are proposed.

Calibration of a Five-Hole Pressure Probe using a Single Sector Error Interpolation Model (단일영역 오차보간 모델을 이용한 5-Hole Pressure Probe의 교정)

  • O, Se-Yun;An, Seung-Gi;Jo, Cheol-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.30-38
    • /
    • 2006
  • A new calibration method for five-hole pressure probe is presented. This method provides accuracies better than those based on the traditional regression method. The calibration algorithm uses a single sector interpolation response surface calculated by comparing the regression curve fits with the actual calibration data. A five-hole pressure probe with hemispherical tip was fabricated and calibrated at Reynolds number of $4.11{\times}10^6$/m and flow angle of ${\pm}48$ degrees. Two data prediction models, the least-square regression and a single sector error interpolation, were evaluated. The comparison of these two calibration methods to a five-hole probe is described and discussed. An evaluation of the calibration accuracy is also given.

Experimental investigation of flow parameters influencing the calibration of five-hole probes (5공프로우브의 보정에 영향을 주는 유동변수들에 대한 실험적 연구)

  • Lee, Sang-U;Yun, Tae-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.637-649
    • /
    • 1997
  • Effects of cone angle, pressure-hole orientation and Reynolds number on the five-hole probe calibration have been investigated for eight large-scale conical five-hole probes, which have either perpendicular pressure holes or forward-facing pressure holes for the cone angles of 45 deg, 60 deg, 75 deg and 90.deg. Pitch and yaw angles are changed from -40 deg to +40 deg with an interval of 5 deg, respectively, when the probe Reynolds numbers are 1.77*10$^{4}$, 3.53*10$^{4}$ and 7.06*10$^{4}$. The result shows that larger cone angle results in more sensitive changes in the calibration coefficients. In the case that the cone angle is 45 deg, the pitch-angle and yaw-angle coefficients of the five-hole probe with the perpendicular pressure holes show a very different trend compared with those of the five-hole probe with the forward-facing pressure holes. On the other hand, when the cone angle is more than 60 deg, each calibration coefficient is nearly independent of the pressure-hole orientation. Additionally, the effects of the Reynolds number on the calibration coefficients are also reported in detail.

A New Calibration Algorithm of a Five-Hole Pressure Probe for Flow Velocity Measurement (유동속도계측을 위한 5공압력프로브의 새로운 교정 알고리듬)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe necessary for calculating three-dimensional flow velocity components. The new data reduction method Includes a look-up, a geometry transformation such as the translation and reflection of nodes, and a binary search algorithm. This new calibration map was applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, this data reduction method showed a perfect performance without any kind of interpolation errors In calculating yaw and pitch angle from the calibration map.

  • PDF

The Performance Assessment of a Straight-Type Five-Hole Pressure Probe Using a Zone Partition and Two-Dimensional Curve-Fitting Functions (영역분할과 2차원 커브피팅 함수들을 이용하는 직선형 5공 압력프로브의 성능 평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.22-31
    • /
    • 2014
  • This paper introduced the new calibration algorithm of a straight-type five-hole pressure probe necessary for calculating three-dimensional flow velocity components. The new velocity data reduction method using both a commercial two-dimensional curve-fitting program and the zone partition method of a calibration map was firstly introduced in this study. This new calibration method can be applied up to the wide flow angle of ${\pm}80^{\circ}$ despite of using a five-hole pressure probe because this data reduction method showed a comparatively good performance in calculating yaw and pitch angles from the calibration map.

Application of the New Calibration Algorithm of a Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브의 새로운 교정 알고리듬 적용)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.863-869
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. This new calibration algorithm was used for velocity data reduction from the calibration map and based on the combination of a look-up, a binary search algorithm and a geometry transformation including the translation and reflection of nodes in a calibration map. The calibration map was expanded up to the application angle, ${\pm}55^{\circ}$ of a probe. This velocity data reduction method showed a perfect performance without any kind of interpolating errors in calculating yaw and pitch angles from the calibration map. Moreover, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole.

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.