• Title/Summary/Keyword: Probability-Load-Life

Search Result 63, Processing Time 0.03 seconds

Life Cycle Cost & Reliability Analysis of Quaywall Design Parameters (안벽 설계변수의 신뢰성 해석과 생애주기비용 분석)

  • Kim, Hong-Yeon;Yoon, Gil-Lim;Yoon, Yeo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.508-518
    • /
    • 2008
  • Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.

  • PDF

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite (TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교)

  • Jo, Young-Jik;Park, Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

Probabilistic Analysis on the Fatigue-Life of the Strengthened Bridge Decks (성능향상된 교량 바닥판에서의 피로수명에 대한 확률론적 해석)

  • 심종성;오홍섭;류승무;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.393-398
    • /
    • 2002
  • This study shows the fatigue test results of experiment on the strengthened slabs, the probability analysis of the fatigue behavior is also presented. Static und fatigue tests were performed on bridge decks strengthened with fiber plastics(Carbon Fiber Sheet, Glass Fiber Sheet, Grid Type Carbon Fiber). In this study, to analyze the probabilistic distribution of the fatigue life, the Weibull distribution was adopted. The Weibull distribution coefficient is inferred from the S-N diagram and the number of repeated load. As the result analysis, as the stress level is higher, the fatigue limit of the strengthened bridge deck are similarly discovered but in the range of the fatigue limit, CG specimen that was strengthened with Grid Type Carbon was proved most effective of reinforcement.

  • PDF

Structural Analysis on Durability of Pedal (페달의 내구성에 대한 구조 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.88-95
    • /
    • 2011
  • In this study, the deformation, stress, vibration, fatigue life and the probability of damage are analyzed at the pedal applied by the force of 300N. The maximum stress at the lower of pedal is shown as 20.801MPa. And the maximum displacement is 0.85mm at the maximum response frequency as 3800Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{5}MPa$ and the amplitude stress of 0 to $10^{5}MPa$, the possibility of maximum damage becomes 0.6%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively improved with the design of pedal by investigating durability against its damage.

A Study on the fatigue strength analysis of the welded joints in ship hull construction (선체구조의 용접이음부의 피로강도 해석법에 관한 연구)

  • 엄동석;강성원;이성구;김원범
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 1992
  • In this report, a method to predict the fatigue strength in welded structure member of ship construction is studied considering the effects of statistical characteristics of mild steels and weld toe shapes on the fatigue crack initiation life. The fatigue test under pulsating bending load is carried out with the model specimens of the web frame in double bottom of ship hull. The propriety of the fatigue life curve with probability of failure in the transverse strength members of ship hull construction is confirmed by the comparison with the results of fatigue test on the model of the various transverse strength members.

  • PDF

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Study on Bike Frame due to Nonuniform Fatigue Loads (불규칙 피로 하중을 받는 자전거 프레임에 대한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2012
  • In this study, 3 kinds of models about bike frame are simulated with static structural analysis, And fatigue life, damage and durability according to fatigue load are analyzed. A bike frame model with diamond type is compared with another model on the reinforced support with its type. In case of the reinforced support type, maximum equivalent stress or total deformation is shown with 10% or 20% more than the diamond type respectively. At both types of models, the trends of fatigue life and damage at both types are same. 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable among the cases of nonuniform fatigue loads. In case of 'Sample history' with the average stress of 0 to -1MPa and the amplitude stress of 0 to 1MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. In case of the reinforced support type, fatigue life becomes shorter and damage probability becomes larger at the right side installed with support than diamond type. The structural result of this study can be effectively utilized with the design on bike frame by investigating prevention and durability against its damage.

Development of Snow Load Sensor and Analysis of Warning Criterion for Heavy Snow Disaster Prevention Alarm System in Plastic Greenhouse (비닐온실 폭설 방재 예·경보 시스템을 위한 설하중 센서 개발과 적설 경보 기준 분석)

  • Kim, Dongsu;Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Hwang, Kyuhong;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.75-84
    • /
    • 2021
  • As the weather changes become frequent, weather disasters are increasing, causing more damage to plastic greenhouses. Among the damage caused by various disasters, damage by snow to the greenhouse takes a relatively long time, so if an alarm system is properly prepared, the damage can be reduced. Existing greenhouse design standards and snow warning systems are based on snow depth. However, even in the same depth, the load on the greenhouse varies depending on meteorological characteristics and snow density. Therefore, this study aims to secure the structural safety of greenhouses by developing sensors that can directly measure snow loads, and analysing the warning criteria for load using a stochastic model. Markov chain was applied to estimate the failure probability of various types of greenhouses in various regions, which let users actively cope with heavy snowfall by selecting an appropriate time to respond. Although it was hard to predict the precise snow depth or amounts, it could successfully assess the risk of structures by directly detecting the snow load using the developed sensor.

An Experimental Study on Fatigue Durability for Composite Torque Link of Helicopter Landing Gear (헬리콥터 착륙장치 복합재 토크링크 피로내구성에 대한 실험적 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.26-31
    • /
    • 2010
  • This research work contributes to a study for the procedure and methodology to assess the fatigue durability for a composite torque link for helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the residual strength degradation approach on the basis of material test data. The full scale fatigue test was performed and compared with the analysis results.