• Title/Summary/Keyword: Probability density estimate

Search Result 136, Processing Time 0.024 seconds

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Estimation of Probe Vehicle Penetration Rates on Multi-Lane Streets Using the Locations of Probe Vehicles in Queues at Signalized Intersections (신호교차로 대기행렬 내 프로브 차량의 위치 정보를 활용한 다차로 접근로에서의 프로브 차량 비율 추정)

  • Moh, Daesang;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.133-141
    • /
    • 2021
  • The probe vehicle penetration rate is a required parameter in the estimation of entire volume, density, and queue length from probe vehicle data. The previous studies have proposed estimation methods without point detectors, which are based on probability structures for the locations of probe and non-probe vehicles; however, such methods are poorly suited to the case of multi-lane streets. Therefore, this study aimed to estimate the probe vehicle penetration rate at a multi-lane intersection and introduce a probability distribution of the queue length of each lane. Although a gap between estimates and observations was found, the estimates followed the trend of observations; the estimation could be improved by the correction factor hereafter. This study is expected to be used as a basic study for the estimation of entire volume, density, and queue length at multi-lane intersections without point detectors.

Study on Timber Yield Regulation Method using Probability Density Function (확률밀도함수를 이용한 목재수확조절법 연구)

  • Park, Jung-Mook;Lee, Jung-Soo;Lee, Ho-Sang;Park, Jin-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.504-511
    • /
    • 2020
  • This study estimated planned felling volumes to set targets for management planning of nationwide country-owned forests. Estimates were made using timber harvest prediction methods that use probability density functions, including area weighting (AW), area ratio weighting (ARW), and sample area change ratio weighting (SCRW). Country-owned forest areas in 2010 and 2015 were used to estimate planned felling volumes, as shown in basic forest statistics, and calculations were made assuming that the felling areas were the changes in the forest area over the 5-year period. For the age classes of V-VI, the average felling ages for AW, ARW, and SCRW were 5.41, 5.56, and 5.37, respectively, and the felling areas were 594,462, 586,704, and 580,852 ha, respectively, with ARW reaching closest to the actual changes. The actual changes in the areas and chi-squared test results were most stable with the SCRW method. This study showed that SCRW was more adequate than AW and ARW as a method to predict timber harvests for forest management planning.

Analysis of the Characteristics for Quadrature Receivers Adopting an Auto-Calibration Method (자동 보정 기능을 가진 직교 위상 수신기의 특성 해석)

  • Kwon, Soon-Man;Kim, Seog-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.100-106
    • /
    • 2009
  • This paper deals with an estimation problem of the gain and phase imbalances between the in-phase and quadrature components in the quadrature receivers which are widely used in wireless communications. It is shown that the estimates derived from the suggested auto-calibration algorithm is asymptotically minimum-variance unbiased as a function of the sampling time. In order to show this characteristic, the probability density functions of the estimates for the gain and phase imbalances are derived first. Then the mean and variance functions are investigated analytically or numerically based on the density functions.

Validity of Wind Generation in Consideration of Topographical Characteristics of Korea (지형에 따른 예상풍력발전단지에 관한 고찰)

  • Moon, Chae-Joo;Jung, Kwen-Sung;Cheang, Eui-Heang;Park, Gui-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • This paper discussed the validity of wind force power generation in consideration of the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind velocity, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was higher at wind power plants installed in southwestern coastal areas where wind velocity was low than at those installed in mountain areas in Gangwondo where wind velocity was high. This suggests that the shape parameter of wind distribution is low due to the characteristics of mountain areas. and the standard deviation of wind velocity is large due to the effect of mountain winds, and therefore, actual generation is low in mountain areas although wind velocity is high.

  • PDF

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.

Positioning of Robot using Visible Light in Indoor Environment (실내 환경에서 가시광을 이용한 로봇의 위치 인식)

  • Kang, Insung;Min, Sewoong;Nam, Haewoon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • In this paper, we propose a new method for improving the accuracy of localizing a robot to find the position of a robot in indoor environment. The proposed method uses visible light for indoor localization with a reference receiver to estimate optical power of individual LED in order to reduce localization errors which are caused by aging of LED components and different optical power for each individual LED, etc. We evaluate the performance of the proposed method by comparing it with the performance of traditional model. In several simulations, probability density functions and cumulative distribution functions of localization errors are also obtained. Results indicate that the proposed method is able to reduce localization errors from 7.3 cm to 1.6 cm with a precision of 95%.

FEASIBILITY MAPPING OF GROUND WATER YIELD CHARACTERISTICS USING WEIGHT OF EVIDENCE TECHNIQUE: A CASE STUDY

  • Heo, Seon-Hee;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.430-433
    • /
    • 2005
  • In this study, weight of evidence(WOE) technique based on the bayesian method was applied to estimate the groundwater yield characteristics in the Pocheon area in Kyungki-do. The ground water preservation depends on many hydrogeologic factors that include hydrologic data, landuse data, topographic data, geological map and other natural materials, even with man-made things. All these data can be digitally collected and managed by GIS database. In the applied technique of WOE, The prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the Weight W+, W- of each factor and estimated the contrast value of it. Results by the ground water yield characteristic calculations were presented in the form of posterior probability map to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective technique for the feasibility mapping related to detection of groundwater bearing zones and its spatial pattern.

  • PDF

Earthquake response spectra estimation of bilinear hysteretic systems using random-vibration theory method

  • Yazdani, Azad;Salimi, Mohammad-Rashid
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1055-1067
    • /
    • 2015
  • A theoretical procedure to estimate spectral displacement of a hysteretic oscillator with bilinear stiffness excited by band-limited excitation is presented. The stochastic method of ground-motion simulation is combined with the random vibration theory to compute linear and nonlinear structural response. The response is obtained by computing the root-mean-square oscillator response using dissipation energy balancing by integrating over all energy levels of system weighting with the stationary probability density of the energy. The results are presented in a convenient form, and the accuracy of the procedure is assessed by comparison with results obtained with the time-domain method using the recorded data. The model shows little or no bias at the structural period of engineering interest.

Estimation of load and resistance factors based on the fourth moment method

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Ang, Alfredo H.S.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.19-36
    • /
    • 2010
  • The load and resistance factors are generally obtained using the First Order Reliability Method (FORM), in which the design point should be determined and derivative-based iterations have to be used. In this paper, a simple method for estimating the load and resistance factors using the first four moments of the basic random variables is proposed and a simple formula for the target mean resistance is also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance factors can be determined using the proposed method even when the probability density functions (PDFs) of the basic random variables are not available. Moreover, the proposed method does not need either the iterative computation of derivatives or any design points. Thus, the present method provides a more convenient and effective way to estimate the load and resistance factors in practical engineering. Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method for determining the load and resistance factors.