DOI QR코드

DOI QR Code

Estimation of Probe Vehicle Penetration Rates on Multi-Lane Streets Using the Locations of Probe Vehicles in Queues at Signalized Intersections

신호교차로 대기행렬 내 프로브 차량의 위치 정보를 활용한 다차로 접근로에서의 프로브 차량 비율 추정

  • 모대상 (서울대학교 건설환경공학부) ;
  • 이재현 (서울대학교 건설환경공학부) ;
  • 김선호 (서울대학교 건설환경공학부) ;
  • 이청원 (서울대학교 건설환경공학부)
  • Received : 2020.11.19
  • Accepted : 2020.12.11
  • Published : 2021.04.01

Abstract

The probe vehicle penetration rate is a required parameter in the estimation of entire volume, density, and queue length from probe vehicle data. The previous studies have proposed estimation methods without point detectors, which are based on probability structures for the locations of probe and non-probe vehicles; however, such methods are poorly suited to the case of multi-lane streets. Therefore, this study aimed to estimate the probe vehicle penetration rate at a multi-lane intersection and introduce a probability distribution of the queue length of each lane. Although a gap between estimates and observations was found, the estimates followed the trend of observations; the estimation could be improved by the correction factor hereafter. This study is expected to be used as a basic study for the estimation of entire volume, density, and queue length at multi-lane intersections without point detectors.

프로브 차량 데이터로부터 전수화 된 교통량, 밀도, 대기행렬 길이를 추정하기 위해 프로브 차량 비율이 필요하다. 이를 위해 기존 연구는 프로브차량과 일반 차량의 위치에 대한 확률구조를 활용하여 지점 검지기 없이 프로브 차량 비율을 추정하는 방법을 제시하였으나, 기존 연구의 방법론은 다차로 도로에 적용할 수 없다는 한계가 있었다. 따라서 본 연구는 각 차로의 대기행렬 길이에 확률분포를 도입함으로써 다차로 접근로에서 프로브 차량 비율을 추정하고자 하였다. 사례연구 결과, 추정치와 관측치 간 이격이 있었으나, 추정치가 관측치의 경향을 따라가는 것으로 나타났으며, 향후 보정계수 도입 등을 통하여 추정치를 개선할 여지가 있었다. 본 연구는 지점 검지기가 없는 다차로 접근로에서 전수화 된 교통량, 밀도, 대기행렬 길이를 추정하기 위한 기초연구로서 활용될 것으로 기대된다.

Keywords

References

  1. Ambuhl, L. and Menendez, M. (2016). "Data fusion algorithm for macroscopic fundamental diagram estimation." Transportation Research Part C: Emerging Technologies, Vol. 71, pp. 184-197. https://doi.org/10.1016/j.trc.2016.07.013
  2. Argote-Cabanero, J., Christofa, E. and Skabardonis, A. (2015). "Connected vehicle penetration rate for estimation of arterial measures of effectiveness." Transportation Research Part C: Emerging Technologies, Vol. 60, pp. 298-312. https://doi.org/10.1016/j.trc.2015.08.013
  3. Chang, H. H. and Yoon B. J. (2017). "Forecasting of motorway path travel time by using DSRC and TCS information." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 6, pp. 1033-1041 (in Korean). https://doi.org/10.12652/Ksce.2017.37.6.1033
  4. Chen, M. and Chien, S. I. J. (2000). "Determining the number of probe vehicles for freeway travel time estimation by microscopic simulation." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1719, No. 1, pp. 61-68. https://doi.org/10.3141/1719-08
  5. Cheu, R. L., Xie, C. and Lee, D. H. (2002). "Probe vehicle population and sample size for arterial speed estimation." Computer-Aided Civil and Infrastructure Engineering, Vol. 17, No. 1, pp. 53-60. https://doi.org/10.1111/1467-8667.00252
  6. Chung, Y. S. and Choi, K. C. (1999). "A development of travel time estimation algorithm fusing GPS probe and loop detector." Journal of Korean Society of Transportation, KST, Vol. 17, No. 3, pp. 97-116 (in Korean).
  7. Comert, G. (2013). "Simple analytical models for estimating the queue lengths from probe vehicles at traffic signals." Transportation Research Part B: Methodological, Vol. 55, pp. 59-74. https://doi.org/10.1016/j.trb.2013.05.001
  8. Comert, G. (2016). "Queue length estimation from probe vehicles at isolated intersections: estimators for primary parameters." European Journal of Operational Research, Vol. 252, No. 2, pp. 502-521. https://doi.org/10.1016/j.ejor.2016.01.040
  9. Comert, G. and Cetin, M. (2009). "Queue length estimation from probe vehicle location and the impacts of sample size." European Journal of Operational Research, Vol. 197, No. 1, pp. 196-202. https://doi.org/10.1016/j.ejor.2008.06.024
  10. Dixit, V. V. and Geroliminis, N. (2015). "Empirical investigation of dynamics of the two-fluid model and macroscopic fundamental diagram with probe vehicles." Transportation Research Board 94th Annual Meeting, TRB, Washington DC, United States, pp. 1-23.
  11. Du, J., Rakha, H. and Gayah, V. V. (2016). "Deriving macroscopic fundamental diagrams from probe data: Issues and proposed solutions." Transportation Research Part C: Emerging Technologies, Vol. 66, pp. 136-149. https://doi.org/10.1016/j.trc.2015.08.015
  12. Feng, Y., Head, K. L., Khoshmagham, S. and Zamanipour, M. (2015). "A real-time adaptive signal control in a connected vehicle environment." Transportation Research Part C: Emerging Technologies, Vol. 55, pp. 460-473. https://doi.org/10.1016/j.trc.2015.01.007
  13. Gerlough, D. L. and Huber, M. J. (1975). Traffic flow theory: A monograph, Special Report 165, Transportation Research Board, National Research Council, Washington, DC.
  14. Geroliminis, N. and Daganzo, C. F. (2008). "Existence of urbanscale macroscopic fundamental diagrams: Some experimental findings." Transportation Research Part B: Methodological, Vol. 42, No. 9, pp. 759-770. https://doi.org/10.1016/j.trb.2008.02.002
  15. Guler, S. I., Menendez, M. and Meier, L. (2014). "Using connected vehicle technology to improve the efficiency of intersections." Transportation Research Part C: Emerging Technologies, Vol. 46, pp. 121-131. https://doi.org/10.1016/j.trc.2014.05.008
  16. Han, M. J. (2016). Modeling pedestrian movement behavior based on decision making process, Ph.D. Dissertation, Seoul National University (in Korean).
  17. Jang, J. H. and Kim. B. H. (2011). "Detector evaluation scheme including the concept of confidence interval in statistics." The Journal of The Korea Institute of Intelligent Transport Systems, KITS, Vol. 10, No. 1, pp. 67-75 (in Korean).
  18. Jeong, Y. T. and Jung, H. Y. (2014a). "A study on improving the reliability of DSRC traffic information considering traffic and road characteristics -Focusing on Busan urban expressway-." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 34, No. 5, pp. 1535-1545 (in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1535
  19. Jeong, Y. T. and Jung, H. Y. (2014b). "A study on calculation of sectional travel speeds of the interrupted traffic flow with the consideration of the characteristics of probe data." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, pp. 1851-1861 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1851
  20. Kho, S. Y. (2002). "A model development of prove cars for travel time data collection." Journal of Korean Society of Transportation, KST, Vol. 20, No. 4, pp. 177-185 (in Korean).
  21. Kim, D. S. (2011). Parameter estimation and elasticity analysis of gravity model by using public transport card data, Master Dissertation, Chonnam National University (in Korean).
  22. Kim, H. J. and Jang, K. T. (2013). "Short-term prediction of travel time using DSRC on highway." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 6, pp. 2465-2471 (in Korean). https://doi.org/10.12652/Ksce.2013.33.6.2465
  23. Kim, J. W., Jeong, H. R., Kang, S. K. and Yun, I. S. (2019). "Rate of probe vehicles for the collection of traffic information on expressways." The Journal of The Korea Institute of Intelligent Transport Systems, KITS, Vol. 18, No. 6, pp. 262-274 (in Korean). https://doi.org/10.12815/kits.2019.18.6.262
  24. Kwon, Y. B., Lee, J. H., Kim, S. H. and Lee, C. W. (2019). "A new approach to the parameter calibration of two-fluid model." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 1, pp. 63-71 (in Korean). https://doi.org/10.12652/KSCE.2019.39.1.0063
  25. Lee, J. H., Moh, D. S., Kim, S. H. and Lee, C. W. (2020). "Analysis of urban network operability and crash risk change cased by rainfall using two-fluid model parameters." Journal of the Korean Society of Civil Engineers, KSCE, No. 40, No. 2, pp. 167-175 (in Korean). https://doi.org/10.12652/Ksce.2020.40.2.0167
  26. Lee, Y. W. (2013). "A study on estimating route travel time using collected data of bus information system." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 3, pp. 1115-1122 (in Korean). https://doi.org/10.12652/Ksce.2013.33.3.1115
  27. Lee, Y. I. and Lee, J. H. (2002). "A study on link travel time estimating methodology for traffic information service (determining of an adequate sample size)." Journal of Korean Society of Transportation, KST, Vol. 20, No. 3, pp. 55-67 (in Korean).
  28. Lu, S., Wang, J., van Zuylen, H. and Liu, X. (2013). "Deriving the macroscopic fundamental diagram for an urban area using counted flows and taxi GPS." 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), IEEE, The Hague, Netherlands, pp. 184-188.
  29. Na, S. Y., Lee, S. J., Ahn, S. H. and Kim, J. Y. (2018). "A study on the estimation of the V2X-rate ratio for the collection of highway traffic information." The Journal of The Korea Institute of Intelligent Transport Systems, KITS, Vol. 17, No. 1, pp. 71-78 (in Korean). https://doi.org/10.12815/kits.2018.17.1.71
  30. Nagle, A. S. and Gayah, V. V. (2013). "A method to estimate the macroscopic fundamental diagram using limited mobile probe data." 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), IEEE, The Hague, Netherlands, pp. 1987-1992.
  31. Park, M. K. and Park, B. H. (2013). "Development of pedestrian accident model in Cheongju." 68th Conference of Korean Society of Transportation, KST, pp. 150-154 (in Korean).
  32. Punzo, V. and Simonelli, F. (2005). "Analysis and comparison of microscopic traffic flow models with real traffic microscopic data." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1934, No. 1, pp. 53-63. https://doi.org/10.1177/0361198105193400106
  33. Quiroga, C. A. and Bullock, D. (1998). "Travel time studies with global positioning and geographic information systems: An integrated methodology." Transportation Research Part C: Emerging Technologies, Vol. 6, No. 1-2, pp. 101-127. https://doi.org/10.1016/S0968-090X(98)00010-2
  34. Shim, J. S., Heo, H. M., Eom, K. J., Lee, C. W. and Ahn, S. H. (2010). "An application of sampling to determine a proper rate of probe vehicles for macroscopic traffic flow monitoring indices." The Journal of The Korea Institute of Intelligent Transport Systems, KITS, Vol. 9, No. 2, pp. 33-40 (in Korean).
  35. Shin, K. W., Shim, S. W., Choi, K. C. and Kim, S. H. (2014). "Expressway travel time prediction using K-Nearest neighborhood." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, pp. 1873-1879 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1873
  36. Sim, S. W. and Choi, K. C. (2006). "Link travel time estimation using uncompleted link-passing GPS probe data in congested traffic condition." Journal of Korean Society of Transportation, KST, Vol. 24, No. 5, pp. 7-18 (in Korean).
  37. Theil, H. (1958). Economic forecasts and policy, North Holland Publishing Company, Amsterdam, Netherlands.
  38. Wong, W., Shen, S., Zhao, Y. and Liu, H. X. (2019). "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data." Transportation Research Part B: Methodological, Vol. 126, pp. 169-191. https://doi.org/10.1016/j.trb.2019.06.003
  39. Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y. and Liu, H. X. (2019a). "Estimation of queue lengths, probe vehicle penetration rates, and traffic volumes at signalized intersections using probe vehicle trajectories." Transportation Research Record: Journal of the Transportation Research Board, Vol. 2673, No. 11, pp. 660-670. https://doi.org/10.1177/0361198119856340
  40. Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y. and Liu, H. X. (2019b). "Various methods for queue length and traffic volume estimation using probe vehicle trajectories." Transportation Research Part C: Emerging Technologies, Vol. 107, pp. 70-91. https://doi.org/10.1016/j.trc.2019.07.008
  41. Zheng, J. and Liu, H. X. (2017). "Estimating traffic volumes for signalized intersections using connected vehicle data." Transportation Research Part C: Emerging Technologies, Vol. 79, pp. 347-362. https://doi.org/10.1016/j.trc.2017.03.007