• 제목/요약/키워드: Probability density distribution

검색결과 505건 처리시간 0.031초

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

유한수심에서의 불규칙파의 파고 분포 (Distribution of Irregular Wave Height in Finite Water Depth)

  • 안경모;마이클오찌
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.88-93
    • /
    • 1994
  • 유한수심에서의 불규칙파에 적용할 수 있는 파고의 확률분포함수를 2가지 해석적 방법으로 유도하였다. 첫번째 방법으로 새로이 유도된 확률분포함수는 Rayleigh 확률분포함수에 대한 직교 다항식을 유도함으로써 급수형태로 표시된다. 유도된 확률밀도함수를 비정규성이 강한 천해에서 측정한 파랑자료와 비교하였다. 확률밀도함수가 자료의 막대그래프와 잘 일치하였으나, 확률밀도함수가 급수로 표시되어 있기 때문에 파고가 큰 부분에서 음의 확률값이 된다. 비록 음의 확률값의 크기가 작다 하더라도 파고의 극치분포함수를 구하기에 부적절하다고 판단된다. 두번째 방법은 최대 엔트로피 법(maximum entropy method)을 적용하여 파고 분포와 매우 잘 일치하며, 극치파고분포와 파고의 통계적인 특성 등을 추정하는 데 매우 유용함을 알 수 있다. 그러나 최대 엔트로피 법을 사용했을 경우, 비정규분포 특성을 나타내는 변위의 분포함수와 파고의 분포함수 사이의 함수관계를 구할 수 없었다.

  • PDF

Monte Carlo Estimation of Multivariate Normal Probabilities

  • Oh, Man-Suk;Kim, Seung-Whan
    • Journal of the Korean Statistical Society
    • /
    • 제28권4호
    • /
    • pp.443-455
    • /
    • 1999
  • A simulation-based approach to estimating the probability of an arbitrary region under a multivariate normal distribution is developed. In specific, the probability is expressed as the ratio of the unrestricted and the restricted multivariate normal density functions, where the restriction is given by the region whose probability is of interest. The density function of the restricted distribution is then estimated by using a sample generated from the Gibbs sampling algorithm.

  • PDF

모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘 (Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot)

  • 한철훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.311-316
    • /
    • 2009
  • 본 논문에서는 파티클 필터(Particle Filter)를 사용한 모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘을 제안한다. 파티클 필터는 몬테카를로(Monte Carlo) 샘플링 방법을 기반으로 사전분포확률(Prior distribution probability)와 사후분포확률(Posterior distribution probability)을 가지는 베이지안 조건 확률 모델(Bayesian conditional probabilities model)을 사용하는 방법이다. 그러나 대부분의 파티클 필터에서는 초기 확률밀도(Prior probability density)를 임의로 정의하여 사용하지만, 본 논문에서는 Sum of Absolute Difference (SAD)를 이용하여 초기 확률밀도를 구하고, 이를 파티클 필터에 적용하여 모바일 감시 로봇 환경에서 임의로 움직이는 물체를 강인하게 실시간으로 추정하고 추적하는 시스템을 구현하였다.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

확률론적 이론에 기초한 동적 통행시간 모형 정립 (Development of Probability Theory based Dynamic Travel Time Models)

  • 양철수
    • 대한교통학회지
    • /
    • 제29권3호
    • /
    • pp.83-91
    • /
    • 2011
  • 이 논문은 확률론적인 방법을 이용하여 동적 통행시간(dynamic travel time) 모형을 도출한다. 동적 통행시간 모형은 차량의 통행시간은 도로 공간상에서의 교통흐름 분포에 따라, 또는 통행구간 출발점에서 시간에 대한 교통흐름의 분포에 따라 결정된다고 가정하여 얻어진다. 이 모형들에서 교통흐름의 분포가 차량의 통행시간에 미치는 정도를 나타내는 확률밀도함수(probability density function)는 여러 가지 형태의 도입될 수 있으나 지수분포를 따른다고 가정한다.

Temperature distribution analysis of steel box-girder based on long-term monitoring data

  • Wang, Hao;Zhu, Qingxin;Zou, Zhongqin;Xing, Chenxi;Feng, Dongming;Tao, Tianyou
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.593-604
    • /
    • 2020
  • Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.

간헐디젤분무의 액적크기 및 속도의 공동확률밀도함수 (Joint probability density function of droplet sizes and velocities in a transient diesel spray)

  • 김종현;구자예;오두석
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.607-617
    • /
    • 1998
  • Comparisons of joint probability density distribution obtained from the raw data of measured droplet sizes and velocities in a transient diesel fuel spray with computed joint probability density function were made. Simultaneous droplet sizes and velocities were obtained using PDPA. Mathematical probability density functions which can fit the experimental distributions were extracted using the principle of maximum likelihood. Through the statistical process of functions, mean droplet diameters, non-dimensional mass, momentum and kinetic energy were estimated and compared with the experimental ones. A joint log-hyperbolic density function presents quite well the experimental joint density distribution which were extracted from experimental data.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • 해양환경안전학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.