• 제목/요약/키워드: Probability bounds

검색결과 96건 처리시간 0.025초

Stationary Waiting Times in m-node Tandem Queues with Communication Blocking

  • Seo, Dong-Won;Lee, Ho-Chang;Ko, Sung-Seok
    • Management Science and Financial Engineering
    • /
    • 제14권1호
    • /
    • pp.23-34
    • /
    • 2008
  • In this study, we consider stationary waiting times in a Poisson driven single-server m-node queues in series. We assume that service times at nodes are independent, and are either deterministic or non-overlapped. Each node excluding the first node has a finite waiting line and every node is operated under a FIFO service discipline and a communication blocking policy (blocking before service). By applying (max, +)-algebra to a corresponding stochastic event graph, a special case of timed Petri nets, we derive the explicit expressions for stationary waiting times at all areas, which are functions of finite buffer capacities. These expressions allow us to compute the performance measures of interest such as mean, higher moments, or tail probability of waiting time. Moreover, as applications of these results, we introduce optimization problems which determine either the biggest arrival rate or the smallest buffer capacities satisfying probabilistic constraints on waiting times. These results can be also applied to bounds of waiting times in more general systems. Numerical examples are also provided.

On the edge independence number of a random (N,N)-tree

  • J. H. Cho;Woo, Moo-Ha
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper we study the asymptotic behavior of the edge independence number of a random (n,n)-tree. The tools we use include the matrix-tree theorem, the probabilistic method and Hall's theorem. We begin with some definitions. An (n,n)_tree T is a connected, acyclic, bipartite graph with n light and n dark vertices (see [Pa92]). A subset M of edges of a graph is called independent(or matching) if no two edges of M are adfacent. A subset S of vertices of a graph is called independent if no two vertices of S are adjacent. The edge independence number of a graph T is the number $\beta_1(T)$ of edges in any largest independent subset of edges of T. Let $\Gamma(n,n)$ denote the set of all (n,n)-tree with n light vertices labeled 1, $\ldots$, n and n dark vertices labeled 1, $\ldots$, n. We give $\Gamma(n,n)$ the uniform probability distribution. Our aim in this paper is to find bounds on $\beta_1$(T) for a random (n,n)-tree T is $\Gamma(n,n)$.

  • PDF

Energy-Efficient Scheduling with Delay Constraints in Time-Varying Uplink Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.28-37
    • /
    • 2008
  • In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.

Time-Delay Estimation in the Multi-Path Channel based on Maximum Likelihood Criterion

  • Xie, Shengdong;Hu, Aiqun;Huang, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1063-1075
    • /
    • 2012
  • To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.

The Method of Reducing the Delay Latency to Improve the Efficiency of Power Consumption in Wireless Sensor Networks

  • Ho, Jang;Son, Jeong-Bong
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.199-204
    • /
    • 2008
  • Sensor nodes have various energy and computational constraints because of their inexpensive nature and ad-hoc method of deployment. Considerable research has been focused at overcoming these deficiencies through faster media accessing, more energy efficient routing, localization algorithms and system design. Our research attempts to provide a method of improvement MAC performance in these issues. We show that traditional carrier-sense multiple access(CSMA) protocols like IEEE 802.11 do not handle the first constraint adequately, and do not take advantage of the second property, leading to degraded latency and throughput as the network scales in size, We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is a randomized CSMA protocol, but unlike previous legacy protocols, does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, it carefully decides a fixed-size contention window, non-uniform probability distribution of transmitting in each slot within the window. We show that it can offer up to several times latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely used simulator ns-2. We, finally show that proposed MAC scheme comes close to meeting bounds on the best latency achievable by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to latency.

  • PDF

고구려 와당(瓦當)문양을 응용한 문화상품개발에 관한 연구 (A Study on the Development of Cultural Products with Applied Koguryo Wadang Pattern)

  • 이미석
    • 복식
    • /
    • 제56권6호
    • /
    • pp.87-95
    • /
    • 2006
  • This is a study regarding the development of Cultural Products with Applied Koguryo Wadang Patterns. The objective of this study is in developing unique Cultural Products which combine traditional Korean images with modern feel by utilizing Koguryo Wadang patterns. The among Korean traditional patterns which implicit the sense of beauty and modeling, chose and investigated the Wadang patterns of the Koguryo. And from it, studied about the originality and characteristics of the Koguryo Wadang patterns. In this characteristics of the Wadang pattern, the representative lotus design pattern was based and reorganized to fine the probability of the modern expression using traditional patterns. After design plans were made for each works, natural dyes were used to dye(dip dyeing, printing) the fabrics(cotton:Kwang-mok) by theme. Approximately 16 pieces of Cultural Products that can be used in daily life were created using Koguryo Wadang patterns, including Traffic or credit card cases, Name card cases, Pouches, CD cases, Cushions, Bags, Purses, Vest, Muffler. In addition, the increased quality of the products will be a competitive edge in the world market where products compete with no national bounds.

TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

  • Lo, Chung-Kung;Pedroni, N.;Zio, E.
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.11-26
    • /
    • 2014
  • The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.

OPTIMAL DESIGN OF BATCH-STORAGE NETWORK APPLICABLE TO SUPPLY CHAIN

  • Yi, Gyeong-beom;Lee, Euy-Soo;Lee, In-Beom
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1859-1864
    • /
    • 2004
  • An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.

  • PDF

LARGE TIME ASYMPTOTICS OF LEVY PROCESSES AND RANDOM WALKS

  • Jain, Naresh C.
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.583-611
    • /
    • 1998
  • We consider a general class of real-valued Levy processes {X(t), $t\geq0$}, and obtain suitable large deviation results for the empiricals L(t, A) defined by $t^{-1}{\int^t}_01_A$(X(s)ds for t > 0 and a Borel subset A of R. These results are used to obtain the asymptotic behavior of P{Z(t) < a}, where Z(t) = $sup_{u\leqt}\midx(u)\mid$ as $t\longrightarrow\infty$, in terms of the rate function in the large deviation principle. A subclass of these processes is the Feller class: there exist nonrandom functions b(t) and a(t) > 0 such that {(X(t) - b(t))/a(t) : t > 0} is stochastically compact, i.e., each sequence has a weakly convergent subsequence with a nondegenerate limit. The stable processes are in this class, but it is much larger. We consider processes in this class for which b(t) may be taken to be zero. For any t > 0, we consider the renormalized process ${X(u\psi(t))/a(\psi(t)),u\geq0}$, where $\psi$(t) = $t(log log t)^{-1}$, and obtain large deviation probability estimates for $L_{t}(A)$ := $(log log t)^{-1}$${\int_{0}}^{loglogt}1_A$$(X(u\psi(t))/a(\psi(t)))dv$. It turns out that the upper and lower bounds are sharp and depend on the entire compact set of limit laws of {X(t)/a(t)}. The results extend to random walks in the Feller class as well. Earlier results of this nature were obtained by Donsker and Varadhan for symmetric stable processes and by Jain for random walks in the domain of attraction of a stable law.

  • PDF