• Title/Summary/Keyword: Probability Rainfall

Search Result 340, Processing Time 0.025 seconds

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.

Evaluation of the Depth of Improved Soil on Weathered Soil Slopes by Rainfall Duration (강우지속시간에 따른 풍화토사면의 개량토 심도 평가)

  • Yu, Jin-Ju;Lee, Jong-Woo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, irregular torrential rainfall have frequently occurred due to abnormal climate, and landslide damage is increasing. In Korea, more than 70% of the total land is mountainous areas, appropriate measures are needed to prevent landslides by heavy rainfall. When improved soil is applied to the surface of the slope, it is possible to suppress an increase in groundwater level due to rainfall penetration and secure stability of the slope. In this study, the appropriate depth of improved soil that can confirm the increase in groundwater level and secure stability by applying improved soil to the weathered soil slope was studied. A total of three cases were analyzed for the slope of the cross-section: standard slope for weathered soil (1:1.5, 1:1.8, and 1:2.0). For rainfall conditions, referring to the regional frequency probability rainfall provided by the Water resource Management Information System, the increase in groundwater level by stage was confirmed by assuming a 500-year frequency precipitation maximum duration of 48 hours. As a result of the study, in the case of natural slopes, the slope was completely saturated before 48 hours the rainfall duration, and there was a possibility of collapse. the improvement depth in the slope of 1:1.5 was appropriate for more than 1m from the surface regardless of the rainfall duration, and in the the slope of 1:1.8 was appropriate of 1m for more than 36 hours. in the slope of 1:2.0, it was appropriate for that safety when improved soil of 0.5m for rainfall duration 48 hours or more.

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

Estimation of the Flash Flood Index by the Probable Rainfall Data for Ungauged Catchments (미계측 유역에서의 확률강우에 대한 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2010
  • As there occurs recently and frequently a flash flood due to the climate change, a sudden local flood of great volume and short duration caused by heavy or excessive rainfall in a short period of time over a small area, it is increasing that significant danger and loss of life and property in Korea as well as the whole world. Since a flash flood usually occurs as the result of intense rainfall over small steep slope regions and has rapid runoff and debris flow, a flood rises quite quickly with little or no advance warning to prevent flood damage. The aim of this study is to quantify the severity of flash food by estimation of a flash flood index(FFI) from probability rainfall data in a study basin. FFI-D-F(FFI-Duration-Frequency) curves that present the relative severity of flash flood are developed for a study basin to provide regional basic information for the local flood forecasting and warning system particularly in ungauged catchments. It is also expected that FFI-D-F curves can be utilized for evaluation on flash flood mitigation ability and residual flood risk of both existing and planned flood control facilities.

Evaluation of Effective Rainfall Ratio Method for Estimating Unit Load from Paddy Fields (비우량 방법에 의한 논 오염부하 원단위 산정시 적용성 평가)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Yoon, Suk-Gun;Choi, Woo-Jung;Choi, Woo-Young;Huh, Yu-Jeong;Cho, Kyeong-Min;Hong, Jung-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.849-854
    • /
    • 2009
  • Pollutant unit load (unit-load) reported by Ministry of Environment (MOE) in 1995 has been a useful method for watershed management and environmental policy decision. The unit-load has been estimated using effective rainfall ratio method. However, reliability of unit-load determined by the method has been criticized especially for paddy field and upland conditions. In this paper the unit-load of paddy field estimated by effective rainfall ratio method was compared with continuous monitoring data. Annual loads was simulated by the method choosing 5~6 storm events randomly from whole events collected. Probability distribution of difference between results by the method and measured data was investigated. The results showed that unit-load derived by the method was generally lesser than measured unit-load and showed wide variations. Therefore, unit-load estimation of paddy fields by effective rainfall ratio method need caution.

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

A stochastic flood analysis using weather forecasts and a simple catchment dynamics (기상예보와 단순 강우-유출 모형을 이용한 확률적 홍수해석)

  • Kim, Daehaa;Jang, Sangmin
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.735-743
    • /
    • 2017
  • With growing concerns about ever-increasing anthropogenic greenhouse gas emissions, it is crucial to enhance preparedness for unprecedented extreme weathers that can bring catastrophic consequences. In this study, we proposed a stochastic framework that considers uncertainty in weather forecasts for flood analyses. First, we calibrated a simple rainfall-runoff model against observed hourly hydrographs. Then, using probability density functions of rainfall depths conditioned by 6-hourly weather forecasts, we generated many stochastic rainfall depths for upcoming 48 hours. We disaggregated the stochastic 6-hour rainfalls into an hourly scale, and input them into the runoff model to quantify a probabilistic range of runoff during upcoming 48 hours. Under this framework, we assessed two rainfall events occurred in Bocheong River Basin, South Korea in 2017. It is indicated actual flood events could be greater than expectations from weather forecasts in some cases; however, the probabilistic runoff range could be intuitive information for managing flood risks before events. This study suggests combining deterministic and stochastic methods for forecast-based flood analyses to consider uncertainty in weather forecasts.

Prediction of Lane Flooding on a Model Site for Rainfall Safety of Rubber-tired Tram (바이모달 트램 모의운행지역에서의 강우에 대한 노선침수 예측)

  • Park, Young-Kon;Yoon, Hee-Taek;Lim, Kyoung-Jae;Kim, Jong-Gun;Park, Youn-Shik;Kim, Tae-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1209-1212
    • /
    • 2007
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM(Storm Water Management Model) engine and Web technology will be an effective tool in securing safety in operating rubber-tired transportation system. In this study, the study area, located in Chuncheon, Kangwon province, was selected to evaluate the applicability of the SWMM model in forecasting urban flooding due to surcharges in sewer system The catchment are 21.10 ha in size and the average slope is 2% in lower flat areas. Information of subcatchment, conjunctions, and conduits was used as the SWMM interface to model surface runoff generation, water distribution through the sewer system and amount of water overflow. Through this study, the applicability of the SWMM for urban flooding forecasting was investigated and probability distribution of storm events module was developed to facilitate urban flooding prediction with forecasted rainfall amounts. In addition, this result can be used to the establishment of disaster management system for rainfall safety of rubber-tired tram in the future.

  • PDF

Drought Index Calculation for Irrigation Reservoirs (관개용 저수지의 한발지수산정)

  • 김선주;이광야;신동원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.6
    • /
    • pp.103-111
    • /
    • 1995
  • Drought index calculation based on the principal hydrological parameters, such as rainfall and reservoir storage, can estimate the duration and intensity of drought in irrigation reservoirs. It is difficult to build up a drought criteria since the conditions change variously by the reliability of rainfall. Because of the increasing water demands, it is urgent to prepare a generalized positive countermeasure to overcome drought. Water demands can at calculated but the estimation of drought characteristics, and the effective water management method can be established. The purpose of this study is to obtain a drought index and build up a data-base on the reservoir basins for establishing the fundamental hydrological data-base. This Index can observe the behavior of the WSI(Water Supply Index) and the component indices. The results summarized through this study are as follows. 1. WSI value of zero does not correspond to 100% in average due to the skewness in the probability distributions. 2. WSI is not a linear index; that is, given change in terms of water volume or percentage of average does not result in a proportional change on the WSI scale. 3. WSI is not always between the reservoir and the rainfall index in magnitude. This is only true if the component indices are of opposite sign. If they are of the same sign, the SWSI will often have a mangitude greater than either of the component indices. This is easily understood, because the concurrence of extreme values of the same sign for the two components is rarer than the occurrence of extreme values for either of the two components individually.

  • PDF