• Title/Summary/Keyword: Probability Evaluation

Search Result 1,253, Processing Time 0.031 seconds

Effect of Microdiversity and Macrodiversity on Average Bit Error Probability in Shadowed Fading Channels in the Presence of Interference

  • Panajotovic, Aleksandra S.;Stefanovic, Mihajlo C.;Draca, Dragan Lj.
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.500-505
    • /
    • 2009
  • The detrimental effect of short-term fading and shadowing can be mitigated using microdiversity and macrodiversity systems, respectively. In this paper, implementation of selection combining at both micro and macro levels to improve system performance is analyzed. An assessment of the performance of such a system is carried out by considering the desired signal as Rician fading with lognormal shadowing and cochannel interference signal as Rayleigh fading superimposed over lognormal shadowing. The proposed analysis is complemented by various performance evaluation results, including the effects on overall system performance of fading severity, shadowing spreads and branch correlation existing at the base station, and correlation between base stations.

Evaluation Method of Quality of Service in Telecommunications Using Logit Model (로짓모형을 이용한 통신 서비스품질 평가방법)

  • Cho, Jae-Gyeun;Ahn, Hae-Sook
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.209-217
    • /
    • 2002
  • Quality of Service(QoS) in the telecommunications can be evaluated by analyzing the opinion data which result from the surveyed opinions of respondents and quantify subjective satisfaction on the QoS from the customers' viewpoints. For analyzing the opinion data, MOS(mean opinion score) method and Cumulative Probability Curve method are often used. The methods are based on the scoring method, and therefore, have the intrinsic deficiency due to the assignment of arbitrary scores. In this paper, we propose an analysis method of the opinion data using logit models which can be used to analyze the ordinal categorical data without assigning arbitrary scores to customers' opinion, and develop an analysis procedure considering the usage of procedures provided by SAS(Statistical Analysis System) statistical package. By the proposed method, we can estimate the relationship between customer satisfaction and network performance parameters, and provide guidelines for network planning. In addition, the proposed method is compared with Cumulative Probability Curve method with respect to prediction errors.

A New Approach to Performance Evaluation of Cellular Systems Considering Mixed Platforms Environment (이질적인 이동성 모델링을 통한 셀룰러 이동통신 시스템의 새로운 성능평가)

  • Yeo, Kun-Min;Ryu, Ji-Hyun;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.351-359
    • /
    • 1999
  • We present a new approach to the analysis of mobile cellular communication systems under the environment of mixed platforms adopting a guard channel scheme. We assume general cell residence time distributions according to platform-types. Our system model is based on a heterogeneous M/G/c loss system with customer-dependent guard channels, where heterogeneous customers with different service time distributions have different numbers of their own guard channels. We develop the general formula of steady state probabilities for the heterogeneous M/G/c loss system with customer-dependent guard channels. The mean channel occupancy times of new and handoff calls are rigorously derived under a general setting. Finally, our numerical results show that the blocking probability and the forced termination probability are sensitive to the cell residence time distributions.

  • PDF

The Performance Evaluation of Missile Warning Radar for GVES (지상기동 장비용 미사일 경고 레이더의 성능 평가)

  • Park, Gyu-Churl;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1333-1339
    • /
    • 2009
  • A MWR(Missile Warning Radar) of GVES(Ground Vehicle Equipment System) has to effectively decide the threat for a detected target. Linear Approximation Fitting(LAF) and Weighted Linear Approximation Fitting(WLAF) algorithm is proposed as algorithm for a threat decision method. The target is classified into a threat or non-threat using a boundary condition of the angular rate, and the boundary condition is determined using probability model simulation. This paper confirms the performance of proposed threat decision algorithm using measurement.

Probabilistic Modeling for Evaluation of Information Security Investment Portfolios (확률모형을 이용한 정보보호 투자 포트폴리오 분석)

  • Yang, Won-Seok;Kim, Tae-Sung;Park, Hyun-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.155-163
    • /
    • 2009
  • We develop a probability model to evaluate information security investment portfolios. We assume that organizations install portfolios of information security countermeasures to mitigate the damage such as loss of the transaction being processed, damage of hardware and data, etc. A queueing model and Its expected value analysis are used to derive the lost cost of transactions being processed, the replacement cost of hardwares, and the recovery cost of data. The net present value for each portfolio is derived and organizations can select the optimal information security investment portfolio by comparing portfolios.

Deep Reinforcement Learning of Ball Throwing Robot's Policy Prediction (공 던지기 로봇의 정책 예측 심층 강화학습)

  • Kang, Yeong-Gyun;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2020
  • Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

Seismic fragility evaluation of piping system installed in critical structures

  • Ju, Bu Seog;Jung, Woo Young;Ryu, Yong Hee
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.337-352
    • /
    • 2013
  • Seismic performance of critical facilities has been focused on the structural components over the past decade. However, most earthquake damages were observed to the nonstructural components during and after the earthquakes. The primary objective of this research was to develop the seismic fragility of the piping system incorporating the nonlinear Tee-joint finite element model in the full scale piping configuration installed in critical facilities. The procedure for evaluating fragility curves corresponding to the first damage state was considered the effects of the top floor acceleration sensitivities for 5, 10, 15, and 20 story linear RC and steel building systems subjected to 22 selected ground motions as a function of ground motion uncertainties. The result of this study revealed that the conditional probability of failure of the piping system on the top floor in critical facilities did not increase with increased level of story height and in fact, story level in buildings can tune the fragilities between the building and the piping system.

Distributed Resource Allocation in Multimedia Ad Hoc Local Area Networks Based on OFDM-CDMA (OFDM-CDMA 기반 멀티미디어 무선 Ad Hoc LAN에서의 분산적 자원 할당 방식)

  • Yang, Hyun-ho;Jeon, Hee-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1250-1256
    • /
    • 2001
  • A resource management scheme for ad hoc wireless local area networks (AWLAN's) is presented. This scheme combines distributed resource management scheme and orthogonal frequency division multiplexing-code division multiple access(OFDM-CDMA) technique to support multimedia services with QoS guarantees. The performance evaluation has done in terms of blocking rates and QoS loss probability.

  • PDF

Noncoherent Detection of Orthogonal Modulation Combined with Alamouti Space-Time Coding

  • Simon, Marvin K.;Wang, Ji-Bing
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.124-134
    • /
    • 2003
  • In this paper, we investigate the error probability performance of noncoherently detected orthogonal modulation combined with Alamouti space-time block coding. We find that there are two types of pair-wise error probabilities that characterize the performance. We employ methods that allow a direct evaluation of exact, closed-form expressions for these error probabilities. Theoretical as well as numerical results show that noncoherent orthogonal modulation combined with space-time block coding (STBC) achieves full spatial diversity. We derive an expression for approximate average bit error probability for-ary orthogonal signaling that allows one to show the tradeoff between increased rate and performance degradation.