124

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL..5, NO.2. JUNE 2003

Noncoherent Detection of Orthogonal Modulation
Combined with Alamouti Space-Time Coding

Marvin K. Simon and Jibing Wang

Abstract: In this paper, we investigate the error probability per-
formance of noncoherently detected orthogonal modulation com-
bined with Alamouti space-time block coding. We find that there
are two types of pair-wise error probabilities that characterize the
performance. We employ methods that allow a direct evaluation of
exact, closed-form expressions for these error probabilities. Theo-
retical as well as numerical results show that noncoherent orthog-
onal modulation combined with space-time block coding (STBC)
achieves full spatial diversity. We derive an expression for approxi-
mate average bit error probability for A/ -ary orthogonal signaling
that allows one to show the tradeoff between increased rate and
performance degradation.

Index Terms: Digital communications, fading channels, noncoher-
ent detection, space-time coding.

I. INTRODUCTION

The next generation of broadband wireless communications
systems is expected to provide users with wireless multime-
dia services such as high-speed Internet access, wireless tele-
vision, and mobile computing [1]. The rapid growing demand
for these services is driving the communication technology to-
wards higher data rates and higher mobility transmissions over
mobile radio channels. However, reliable communications are
challenged by the physical limitation of the wireless channel.
Multiple input multiple output (MIMO) wireless systems have
become an active research area (see e.g., [2] and references
therein). It is well known that MIMO systems promise very
high data rates with low error probabilities, especially for the
case that the channel is known at the receiver [3], [4]. Sev-
eral design techniques for so-called space-time codes when the
receiver has complete knowledge of the channel statistics have
been developed (see e.g., [S]-[8]). This knowledge is often ob-
tained from pilot signals periodically sent to the receiver. How-
ever, in certain scenarios, the assumption that channel state in-
formation is available at the receiver is questionable. In particu-
lar, in a rapidly changing mobile environment or when multiple
transmit and receive antennas are employed, channel estimation
is either costly or even impossible. As such, one is motivated to
investigate space-time coding techniques that are capable of per-
forming well without knowledge of channel estimates [9]-[21].

It is shown in [9]-[11] that high capacities with multiple an-
tennas are achievable with no channel state information at ei-
ther the transmitter or the receiver. For the noncoherent MIMO
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channel, Marzetta and Hochwald proposed a class of signals
called unitary space-time signals and showed that by combin-
ing them with channel coding one could achieve a high fraction
of the channel capacity [11], [13]. To help make noncoherent
MIMO communication practical, differential modulation tech-
niques have been proposed (see e.g., [15]1-[21]). These tech-
niques can be regarded as a generalization of the standard differ-
ential phase-shift-keying (DPSK) signals commonly used with
a single antenna over an unknown channel.

Traditionally, frequency-shift-keying (FSK) is a standard sig-
naling scheme for noncoherent detection with a single transmit
antenna. In this paper, we investigate the performance of non-
coherent detection of an orthogonal FSK modulation combined
with Alamouti’s space-time block coding (STBC) scheme [7].
While, in principle, the performance of this scheme could be
analyzed within the framework of unitary space- time signals in
{11], here we employ methods that more directly allow an ex-
plicit evaluation of exact, compact closed-form expressions for
the pair-wise error probabilities (PEP) in the presence of an ar-
bitrary number of receive antennas. We find that there are two
types of PEP that characterize the performance. For the type I
PEP, we utilize the cumulative distribution function (CDF) of
the decision statistic, expressed as an inverse Laplace transform
involving the moment generating function (MGF) of this statis-
tic, to obtain the exact PEP for Rayleigh fading channels. This
technique has previously been applied with success to coherent
space-time coding systems [22]. For the type Il error, we employ
the approach taken in [23] to evaluate the exact PEP. In the case
of the latter, our closed-form PEP expression is given directly
in terms of the MGF (and its derivatives) of the underlying fad-
ing model thereby allowing one to obtain this performance for
the generalized fading channel, an example of which might be
Nakagami fading. Our PEP results show that noncoherent FSK
combined with STBC achieves full spatial diversity. We also de-
rive an approximate average bit error probability (BEP) for M-
ary orthogonal signaling to show the tradeoff between increased
rate and performance degradation.

We begin by deriving the maximum-likelihood (ML) metric
for noncoherent Alamouti space-time coding over a Rayleigh
fading channel analogous to the approach used in [23, Chap.
7] for the single transmit antenna case. Following this, we use
the ML metric to evaluate the various system performances de-
scribed above, ending the paper with a discussion of numerical
results illustrating the behavior of the expressions derived from
the analyses. While, unlike the coherent and differential STC
cases, the combination of an Alamouti code and noncoherent
FSK modulation will not result in a metric that partitions so as
to allow for separate decisions on the two component symbols of
the space-time symbol, it nevertheless represents a simple con-
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stant envelope STBC scheme that achieves full spatial diversity
(whereas, for example, the designs in [11] and [13] do not). Fur-
thermore, it is able to perform without the need for any channel
state information whatsoever or assumptions on the continuity
of the channel gain from space-time symbol to space-time sym-
bol - our scheme only requires that the gain be constant across
two FSK symbols. If, in the differential space-time modulation
combined with an Alamouti code case the above assumption of
continuity cannot be justified, i.e., the channel changes rapidly,
then this system suffers from a severe performance degradation
even for moderately fast fading [26].

II. THE MAXIMUM-LIKELIHOOD DECISION RULE
FOR RAYLEIGH CHANNELS

To keep matters simple at first, we begin by assuming a single
receive antenna. Let c;; denote the complex channel gain from
the jth transmit antenna (j = 1, 2) to the single receive antenna.
Then for the Alamouti code [7], the two received complex base-
band signals are given by

y(t) = cuimi(t) + crpza(t) +n(t), 0 <t < Ty
y(t) = —cnzy(t — Ts) + crozi(t)

+n(t-Ty), Ts <t < 2T, (D

where z;(t),z2(t) represents the complex data symbol pair
transmitted over the channel and n(¢) is a complex Gaussian
zero mean noise with E{n(t)n*(7)} = (No/Es)é(t — 1) =
20%:6(t — 7). The conditional (on the channel) likelihood func-
tion is given by'

pylz,c)
= C’oexp{ — #]{[jOT y(t) - (Cllxl (t) + 612$2(t))|2dt
7 ) = (—eus(t = T) + ezt (e - T)Pde] }
which after some simplification can be expressed as
p(ylz, c)
= C’oexp{ [fo (t)|?dt + f dt
+(|011|2 + |612|2) fO ® le let + fO lz Izdt)

—2|(:11l'f0T“ y(t)z} f y(B)za(t — T, dtl
x cos(fy, + (;31)

—21612|‘foT8y w3(8)dt + 7 y(®)w (=T, dt‘
x cos(f12 + ¢g)] }, 3)

where

611 = arg 11,

arg /0 " oy (@ - /T T

f12 = arg cia,

=
I

y(O)a(t = T)at),

1 The vector notation g and @ is used merely as a shorthand means of repre-
senting the corresponding waveforms y(t) and z(¢) as might be the case in a
Karhunen-Loeve or sampling expansion of these processes. Furthermore, Cp is
a normalization constant that is irrelevant in so far as the detection process is
concerned and c is the vector of channel gains ¢1; and ¢13.

¢1 = arg(/OTs y(t)xé(t)dH/TQTS

Assuming uniformly distributed channel phases 6;; and ;5 (as
would be the case for Rayleigh fading), and averaging over these
phases, we obtain

y(O): (¢ = T)dt). (4

p(ylz, cnl; leiz])

= CoeXP{ = 5oz (len* + [er2f)
x(fy" lz1(8)[? dt+f0 l2dt)}
><Io ’(11|‘f0 f y(t)za(t — T, dz“)

xlo(ak:m] Jy w3 @t + [2 y@a - Tdt]), 5)
where we have also absorbed the data independent terms involv-
ing into the constant Cy. Next, we assume a modulation such
that x;(t) and z-(t) are normalized to unit energy. Then (5)
simplifies to

p(y|.’E, - : )
= C’oexp( 61;2)
X]0<;12;|C11|‘f03 y()zi(t
xexp(— ]%Iziﬁ)

T,
XIO(;%;WHI‘ Iy y(t)zs

)t — [21" y(t)za(t - T)d)

(B)dt + [l y(t)zi(t — T, dtD (6)

Finally, assuming that |c;;| and |¢;2| are independent (but not
necessarily identically) Rayleigh distributed amplitudes, then
averaging over these distributions we obtain after some simpli-

, (2) fication the unconditional likelihood function

p(ylz)

= Gl )(m)

xexp{ & [135;11 y(D)z1 ()t — [ y(t)aa(t - T. dt’2
| [ yasdt + [ y( acl(t—T)dtH}, )
where

Y11 = |e11|*Es/No, 712 = |c12|* Es /Ny (8)
are the instantaneous fading SNRs per transmit antenna for the
two channels and 7,1, 12 are their corresponding statistical av-
erages®. Taking the natural logarithm of (7) and ignoring data-
independent terms and normalization constants we obtain

Inp(ylz)
Y11 Ts * 2T
= | fy war(dt = [7 g (t -
14:\/2%12 fO dt +f Y t)‘rl (t - dtl

2Where convenient, we shall use an overbar to denote statistical expectation.
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i.e., a weighted square-law metric. Thus, for the Rayleigh
channel, the maximum-likelihood (ML) decision is to choose
x1(t) = & (t)and z2(t) = £2(t) such that

z1(t), 22(1)

—1_711

= g}agg 1+2‘Yu f() y(t)'rl (t dt - fT y(t £L'2(f - s)
+ 1+271z fO t)x2 dt + fT y 'Tl (t -T )dt‘ 3 (10)

which for identically distributed channels, i.e., ;1 = 12 = 7,
simplifies to

'i'l(t)vi:2()
= max_l‘fo y(t)zt(t) dt—f y(t)za(t — T, dt‘

Z1,T2

Sy y®zstdt + [y (t = T, dt’

2 max~'m(y, z1,z2).
1,22

1D

Note that, unlike the coherent detection case, the metric of (9)
does not partition to allow for separate decisions on z; () and
o (t) .

It is interesting to note that if one were to try to use say
M-PSK as the modulation whereupon z;(t) and z5(¢) would
take on values e/?* and /%2 with 6; ranging over the set
2rm/M,m =0,1,..., M —1, then the metric to be maximized
in (11) becomes

T, 9 2T, 2
m(y, 1, z2) :2(’/0 y(t)dt‘ +l/T y(t)dt‘ > (12)

which is independent of the data. Thus, as one might expect, M-
PSK cannot be used for noncoherent detection on the space-time
channel.

Using (1), the following components are needed to form the
ML metric:

T, 27T,
z8 /0 y(O&; (Dt — /7 y(£)ia(t — To)dt

Ts :
=cn [;nl(t)'icl(t) + w;(t):i*Q(t)] dt
0
Ts

(22021 (1) = @1 ()22(8) | dt + Ny,

T,
+c12 / [Z") (t)i‘; (t) + .’L‘I(t)l‘l (t)] dt + Nz, (13)
0
where
T, 2T,
N, é/ n(t);iq‘(t)dt—/ n(t)ds (t — Ty)dt,
0 8
T 2T
N, & / n(t)zs(t)dt +/ n{t)&, (t — Tg)dt 14)
0 el
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Furthermore, it is straightforward to show that

NN} =0,
|N1|2 = |N2 2= 2N0/Es

(15)
III. ERROR PROBABILITY PERFORMANCE FOR
BINARY ORTHOGONAL FSK MODULATION

Assume now that , (t) and 23 (¢) take on values from a binary
orthogonal FSK modulation with signals s1(#) and s3(t) such
that

T,
/ s1(t)s5(t)dt =0,
0

Ts T )
/ |51 (2)|2dt = / |s2(8)|2dt = 1.
0 0

Furthermore, let s; (¢) correspond to a binary “0” and s (1) cor-
respond to a binary “1”. Then, if the actual signals transmitted
are say x1(t) = s1(¢),z2(t) = s1(¢t) (corresponding to the bi-
nary data sequence 0,0), there are three possible error sequences
that can occur. We now compute the PEP for these three error
sequences.

From (13) and the orthogonality property in (16), the follow-
ing ML metrics result:

A. Iy (t) = $i (t),i‘Q(t) = S2(t)
1Z)* + 125
= |Cll + c12 + N1A|2 + l —c11 +¢19 + ]\/54|2
B. .f?l (f) = Sz(t),j}g(t) = 81 (t)
1ZP? + 1237
=lci1 = ¢z + NEJ2 + |ens + ez + NP2
C. (;31 (t) = 89 (t)’,fz (t) = Sz(t)
|ZE) + 12517 = INC P+ INSJP.

(16)

an

(18)

19
For the correctly detected sequence, we have
D. 21(t) = s1(t), Z2(t) = s1(2)

|ZP 2 +|ZP)? = 211 + NP + 2c12 + NP, (20)

In (17) — (20), the noises are defined as follows:
T, 2T,
NA 2 / n(t)st (£)dt — /
0 T,

N2 /Ts n(t)sh(t)dt + /ZTS n(t)si(t — Ts)dt,

8

Ts 27T,
NP £ / n(t)ss(t)dt — /
0 Ts

T, 2T,
NP & / n(t)st(8)dt + /
0

T,

T, 2T,
Nfé/ n(t)s;(t)dt—/
0 T,

' T, 2T,
N é/ n(t)s§(t)dt+/
0 Ts

n(t)s2(t — Ty)dt,

n(t)s; (t — Ts)dt,

n(t)s2(t — Ts)dt,

n(t)52 (t - Ts)dt7

n(t)ss(t — Ty)dt,
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2T
/ n(t)si(t — T,)dt,

Ts

NP & / s (i + / Byt - Tt

Ts

T,

NP 2 / n(t)s](E)dt —
0

2D

From a comparison of (17) and (18), it is simple to see that
the PEP for the error events of case A and B will be identical.
We define this PEP, which results in 1 bit error, as being of type
I and is computed as

2
P(X = X); = {Z|ZA|2>Z[ZD )
i=1 i=1
2
=p{ 3 12PP - Z Z42 <0} @)
=1 i=1

Defining £ = 37 |ZP|? — Y.2_, | Z{]? then the probability
required in (22) can be evaluated in terms of the MGF of &,
Me(s) = BE{e*} = [ e*tpe(€)dE, as

P(X = X); =Pr{¢ < 0}

in which case

2 2
@) Av =3 |1ZPP - 128 =¢
i=1 i=1

Using the definitions of ZZ.A and Z iD in (17) and (20) and the
noise correlation properties in (21), it is straightforward to show
that the covariance matrix {2 is obtained as (27) shown at the
bottom of this page. After multiplication by the matrix A and
adding the identity matrix, we get (28) as shown at the bottom
of this page, where s¢ £ 25Ny /Es and 711, %12, are defined in
(8).

Next, assuming i.i.d. fading, i.e., 11 = 12 = 7, (28) simpli-
fies to (29) as shown at the bottom of this page. Finally, taking
the determinant of the matrix in (29), we obtain

(26)

1 2
det[I + sA] = (5(1 +29)s2 — Ao — 1) . @0
Using (30) in (24) and then substituting the result in (23), we
obtain the PEP

L P(X - X);
1 [T Me(— j
= _/ Mds. (23) 1 ety 1 d
271'] ; S - 27T] . 2 S0
=3 so(L(1+27)s - 750 — 1)
To compute the MGF M, (s) for the Rayleigh channel, we make _2
use of a result of Turin [24] for quadratic forms of zero mean 1 petioo (%(1 + 2’7))
complex Gaussian random variables, namely, = ‘2—7;3 / ‘ 2(1127) 17247\ 2
. oo - V)
B{-s(vT)* Av} = (det[I + sQA]) : 24) . 1 i an
50,
(s -+ JW—%)Z °
where v is a column vector of such random variables, A is an 0 1+2%
arbitrary Hermetian matrix, and {2 = E{v(vT)*} is the covari- . .
ance matrix of v. In our application, v = [ZP ZP ZAZ4] and which can be evaluated by the residue method as
10 0 o P(X — X)r 2
01 0 0 L )
A= : 25 (-(1 + 27))
00 -1 0 ) = - Residue 2 =
0 0 0 -1 R.H.P Poles (30 _ 1!2(1+2'y)+'y +'y)
1+42%
4|011|9 + 2N0 0 2!011|2 + %S— —2|C11|2 — g(:
0= 0 4|C12|2 + M 2|012|2 + %S 2'612'2 + %E (27)
2'011'2 + Ml 2|612|2 + NO IC]1|2 + |(312|2 + % |(312|2 —
—2|C11|2 NO 2|er2? + FQ ler2]? = ena|? lern]? + lerz|® + %Q
1+ (14 2%11)s0 0 -1+ 2911)s0 5(1+2%1)s0
0 14+ (1 +2%2)s0 —5(1 + 2%12) 80 —%(1 + 2%12)s0
I+sA4 =1 1(14+27,)s 5(1+2%12)s0  1- (1 + 3 (01 + ’712))50 5(711 = M2)so (28)
—3(1+2%1)s0 3(1+4 2%12)s0 (11 — T12)s0 1- (1 + (L + 712))
1+ (14 2%)s 0 —1(14+2¥)s0  $(1+29)s0
0 L+ (1+2%)s0 —5(1+29)s0 —4(1+2%)s0
NA = 2 3
I+s $(1+27)s0 L1+29)s0  1—(149)s0 0 (29)
—5(1+29)s0 (1 +27)so 0 1—(1+%)sg
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d (30 +27)
=- lim S
- VA(H3 T d"’o (s N 2(1+27)+ﬁ2~«7)

1425
_ (2¢/2(1 4 2%) + 42 + 7)(1 + 27)?
(V21 +29) + 72 + 9)2(/2(1 + 27) + 723’

which for large # varies as

(32)

P(X = X); = (33)

‘Q“w

For the error event of case C, we define the conditional (on
the channel gains) PEP, which results in 2 bit errors, as being of
type II and is computed as

P(X — X"Clﬂ, |C}2|)

:Pr{;lZc > Z|ZD }

—Pr{Z|ZD Z;zﬁ <0}

To evaluate the conditional PEP in (34), we make use of the
results in Appendix 9A of the Simon/Alouini book [23].* In
particular, letting A = 1, B = —1,C = 0and L = 2 in (9A.2),
then from (9A.1), we have

2 2
Pr{D < 0} = Pr{ Y-S P < o},
=1 =1

where the pairs {X;,Y;} are mutually independent complex
Gaussian random variables. (Note that X; and Y; can be cor-
related as will be the case here.) Also, the X;s must have identi-
cal variance and likewise for the Y;s. Thus, associating X; with
ZPand Y; with either Z#, the type II conditional PEP can be
computed in closed form from Pr{D < 0} of (35).

The parameters needed in (9A.3) — (9A.5) of [23] are as fol-
lows:

(34)

(33)

&

S

No

s

pee = SE(NPP) = SE{INPP} =
by = 3E(NEPY = SB(NSP) =
ey = SE(NP(NEY') = S BN (N,0)°) =

3While the PEP for the type II errors could also be evaluated using the in-
verse Laplace transform method of (23), the advantage of the approach taken
here is somewhat more general in that the expression for the PEP so obtained is
expressed directly in terms of the MGF (and its derivatives) of the fading pro-
cess and thus allows its evaluation for arbitrary channel fading statistics. The
reason for this is that the latter approach first evaluates the conditional (on the
fading) PEP and then averages over the (arbitrary) fading statistics whereas the
former approach directly evaluates the unconditional PEP including the fading
statistics and as such is only valid for complex Gaussian (Rayleigh or Rican en-
velope) fading amplitudes. It should be pointed out, however, that while offering
the above advantage, unfortunately, because of the nonzero correlation between
certain noise components, e.g., N f‘ and N2D , the approach used to obtain the
type 1L PEP cannot be used to evaluate the type I PEP.
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w =0,
1 1E,
Yy =y = - = = (36)
1 2 \/4(/‘1"1“7;,1/ - |ﬂ.vy|2> 2 Ny
Furthermore,
e = 2(128 Prugy + 126 Priza
(2P 2 oy — ZP(Z0) 1, )
N,
= SE—O|611'2
€10 = 2(1 28 Phyy + 125 P 1tz
(2" 2 ay — 22102, )
_ NO 2
= 8Es lei2]”,
N
LH=&ut+&a= Sfj <|Cl1|2 + |C12|2>, 37
and
&1 =271 — |27 = 4len P,
€2 = 251 — |25 = dlewal’,
§o=&1 + &= 4(|611|2 + |C12[2)- (38)
Finally,
_ 20313 (E1ve — 52)}1/2 —0
(v +1v2)? ’
b= [2”5”1(£1V1 +£2)}m =207 + 2]V (39)
B (v1 + v9)? BRI '
Since from (4.46) and (4.23) of [23]
m—1
_ B2y (B2/2)"
Qui0. =5 ool - 5) L2
Qm(ﬂ:o) = 17 (40)
then the conditional PEP is computed from (9A.15) as
N 1 bQ b2
P(X = X|ym) =5 (14 g)ew(=5). @D

To evaluate the average PEP P (X -5 X ) u one now av-

erages over the distributions of v;; and ;2. Recognizing that
b%/2 = ~11 + 712, then averaging over the i.i.d. channel statis-
tics, the unconditional PEP of the second type becomes*

P(X = X = SAL (- (M, (-1) + M), @2)

where M\" (s) = d" M., (s)/ds".

4The reader is reminded that although this PEP can be computed for arbitrary
fading channel statistics, the decision metric that results in this performance is
optimum only for the Rayleigh channel as per the derivation in Section I. Thus,
the performance obtained from this computation will at best be suboptimum.
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For the case of Rayleigh fading,

1

M’Y(S) = 1 _ S"—}/’
MO v 43
(s) = =57 (43)

and thus the PEP of the type II error event is obtained from (42)
in closed form as

. 1 1 1 7
P(X = X)) = =
( Ju 2(1+ﬁ)<1+7+2(1+7)2)
1+37/2
= —" 44
2(1+7)3 @4
which for large ¥ varies as
3
X o5 X))y 4
P(X = X))y = yres (45)

Note that both PEPs evaluate to 1/2 as they should at ¥ = 0.

Finally, the average bit error probability (BEP) can be approx-
imately evaluated from the two types of PEP as follows. For
each input of 2 bits, the Alamouti STBC generates a pair of bi-
nary signals, the code has rate » = 1 bps/Hz. Each of the two
type I error events results in a single bit error whereas the type
II error event results in 2 bit errors. Thus, the average BEP is
approximately given by

Py(E) = % [2 (1 x P(X — X)I) +2x P(X - X)H]

=P(X > X);+P(X - X))y

IV. ERROR PROBABILITY PERFORMANCE FOR
M-ARY ORTHOGONAL FSK MODULATION

Consider now a 4-ary orthogonal modulation where the sig-
nals s1(t), s2(t), s3(t), 84(¢) are arbitrarily assigned to the bit
sequences 00,01, 10, 11, respectively and satisfy the orthogo-
nality conditions analogous to (16). Since now 4 input bits gen-
erate a pair of Alamouti symbols, the code has rate r = 2 bps/Hz.
There are still two types of PEP. For example, if as before the
actual transmitted sequence is z;(t) = s1(¢),z2(t) = s1{t)
(corresponding to the binary data sequence 00, 00), then there
are a total of 15 possible error sequences that can occur - 6 of
type I and 9 of type II. For the 6 type I error events, 4 of them
result in a single bit error while 2 of them result in 2 bit errors
each. For the 9 type II error events, 4 of them result in 2 bit
errors, 4 of them result in 3 bit errors and 1 of them results in 4
bit errors. Hence, the average BEP is approximated by

Py(E)
> 1 (1 PX = X)) +2(2x P(X - X))

+4 (2 x P(X - X)n) +4 (3 x P(X — X)H)

+1 (4 x P(X = X),,)]
=2P(X = X); +6P(X = X)y1. “n

Generalizing to M = 2'"-ary orthogonal modulation (code rate
r = log, M bps/Hz), there are 2(M — 1) type I errors resulting

(46)

in a total of M log, M bit errors and M? —2(M —1) — 1 type I
errors resulting in a total of M (M —1) log, M bit errors. Hence,
the average BEP is approximated by

Py(E)

1 .
 — | Mlog, M x P(X - X
2log, M 0g M x P(X = X)),

+M(M —1)logy M x P(X — X),,]

- MP(X—)X) —M(Ag_l)

V. EXTENSION TO THE CASE OF MORE THAN ONE
RECEIVE ANTENNA

Assume now that the receiver contains L, antennas.
analogous to (1), the 2L, received symbols are given by

P(X - X)iy. (48)

Then,

yi(t) = cuma(t) + cpz2(t) +n(t),0 <t < Ty
yl(t) = —011.’1,‘; (t — Ts) + Clg.’lff (t — TS)

Fm(t), Ty <t <2T,, 1=1,2,...,L,.(49)

Following steps analogous to those in Section 1, it can be
shown that the log-likelihood ratio of (9) is now given by

Inp(y|z)
L, B T

= 5[ A oy 0t = " woyeate - Tyar]
=1
ﬁ%ﬁjﬁww@mm+ﬁfwwmu—nm4%w>

Thus, the ML decision rule is to choose z;(t) =
z2(t) = Z2(t) such that

il (t)and

£1(1), 22(¢)

= max 12
I1,T2

fo y(t ml( )d

|:1+2'Yl1
2
— [ wt)aa(t - T)at

Y2
+ 1+2%2

i . 2T, 2
foT yi (x5 (t)dt + f; yi(t)x (t — Ts)dt‘ ], (51
or for identically distributed channels, i.e., 51, = 12 = 7,
‘%] (t)a i‘Q (t)

~1 Ts * 2T, 2
= max Z ‘ & gtywr(tydt - [ yl(t);rg(t—Ts)dt‘

T, . 2T, 2
+| [ whas©dt + 7 et - Toa| | 6

Analogous to (13), we define

27,
- / Y1 (t) T2
T,

o [ 30 + w300 a

Ts
Z,é/O y(8)&T (t)dt (t — Ty)dt

Ts
van [ [0 - atwmo]a N,
0
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T,
ZH-L,- é/ yl(t).’i';(t)dt—f—/
o ;

JTs

T,
= n /0 [xl(t);;:;(t) - x;(t);il(t)}dt

[m(t)iﬁ;(t) + 2t (8 (t)] dt + Nign, . (53)

T, 2T,
N & /0 ()& (8)dt — / nu(t)ia(t — Ty)dt,

T,

A T, 27T,
Niew, & [Cmsid+ [ mom - Tod,
[¢]

s

1=1,2,...,L,, (54)
and have the properties
NV =0,
IN? = 2Ny /E,, 1 =1,2,...,2L,. (55)

To compute the error probability performance for binary orthog-
onal FSK modulation, we proceed as in Section III. Analogous
to (17) — (20) we have

A. ii?l (t) = 81 (t),ii'g(t) = Sg(t)

2L, L,
SN2 = len + e+ NP
=1 =1
Lr
+3 | —en + o+ N I (56)
1=1
B. .i‘l (t) = SQ(t),jﬁz(t) = Sl(t)
2L, L,
MNIZPP = len -+ NP
=1 =1
L,
+> len + ez + N, 1P (57)
=1
C.21(t) = 52(t), 22(1) = s2(1)
2L, 2L,
Y1207 =Y INCP. (58)
=1 =1
For the correctly detected sequence, we have
D. i’l(t) = Sl(t),.ﬁi'g(t) = Sl(t)
2L, L, L,
SIZPP = "12en + NPP+D 12en + NE L2 (59)

=1 =1 =1

In (56) -(59), the noises are defined as follows:

T, 27,

N A / w(t)s; (1)t — / na(t)sa(t — To)dt,
0 Ts

2T,

T,
N,/_LLT = / ng(t)ss(t)dt + / ny(t)s, (t — Ts)dt,
0 T,
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1 o,
A
NP & / ng(t)s5(t)dt —/ ny(t)sy (t — Ts)dt,
0 Ts

T
s

Ts 2T,
= / ng(t)s](t)dt + / n(t)so(t — Ty)dt,
0

=
[
[I>

T, 2,
/ ny(t)s5(t)dt — / ny(t)s2(t — T )dt,
0 T,

2
+Q
h
3

>

T, 2T,
/ ny(t)s5(t)dt + / ni(t)sa2(t — Ts)dt,
0

Ts

T 27T,
NP 2 / ()55 ()t — / m(t)s: (¢ — TL)dt,
0

s

T, 2T,
Nl?_Lr é/ ny(t)s] (t)dt +/ ni(t)s1(t — Ts)dt. (60)
0

s

Consider first the type I error. Again we can use the result of
Turin [24] to evaluate the quadratic form necessary to compute
the PEP. Here, we define the vector v needed in (24) by v! =

(2P2P,,,2P 28, ... 2P 28 Z0Zh, 202, ... 2},
ZQALT]. When this is done, then analogous to (29), the matrix

I + s£2 A can be partitioned into four block diagonal 2L, x 2L,
matrices as follows:

M,

M, (61)

I+sQA:[ Mﬂ,

where

M, =1+ 1+29)I,,
L +29)s0 L(1+29)s0 ]

M,=1I ‘ ! 2 ,

2 L. ® [ —;(1+2fy)30 L

3(1+27)s0

—%(1-’-2’7)30

My=[1-(1+%)]L,,

M3:ILF®|:

and ® denotes Kronecker product. Since
det[I + s A] = det(My)det(M, — MM, M3), (63)

then it is straightforward to show that (30) generalizes to

1 ] 2L,
defl +504] = (1 +20)53 =350 —1) . (64)

resulting in the type I PEP

P(X - X);
1 fetiee 1

' 3T dSo
e—joo 30(%(1 + 27)s3 — Yso — 1)
—2L,
1/Hm Ga+ﬂ0
- 2mj e=joo g (80 - \/W-W)ZLT

1+2%

:ﬁj

1
X 3
(So N ,/2(1+2~7)+72—7>2

1425

dso. (65)
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Once again using the residue method we obtain

1 —2L,
(5(1 + 2"?/))
= — » Residue
R.H.P Poles 2(14+27)+72+7 2L
S0 (30 - 1125 )

142%
1 d2L —1
=- lim

oo V2am T4y (2L — 1) g2l
0=~ 7125

— 2L,
(80+@) ]

(%(1 + 2@)_%
X . (66)
S0 (So + —__\/2(1727)—-%_7277) ’

1+2%

It can be shown that

1 dar! 1
(n—1)!dsp~" so(so + a)”

2 ( 2n_l1 )Sg_lal_l

5350 T @

= (-1 M (67)

Thus, letting n = 2L,, we obtain after some simplification the
desired closed-form expression for the type I error as

Lo AL, —1
P(X—)X)I:(1+2’7)2LTZ< 2LT -1 )

=1

y 221 +29) + 32 +3) 7

2L=1(/2(1 + 27)

2(1+27) + 12 -
F2)4Lr— ’

(68)

which reduces to (32) for L, = 1.
Consider next the type II error. The parameters needed in
(9A.3) - (9A.5) of [23] are as follows:

1 D2 _NO
§E{|Nl | }— —E’-s’

Mz =
1 - No
Hyy = §E{|Nlc|2} = Fs’
1 S
May = §E{NID(NIC) } =0,
w =0,
1 1E,
V] =Vy = = —-—. 69)
! 2 \/4(Hmmufyy - |:umy|2) 2 Ny
Furthermore,
L
No .
=85 3 (lenl” +lesP?)
-1
L,
& =41 (I(,11|2 + |(112| > 70)

and
1/2

L,
a=0, b= |:22(711 + Y12) 71

I=1

Once again using (40), then the conditional PEP as computed
from (9A.15) of [23] is given by

1
9 + 4L, —1

bz/Q (—%)-1}.(72)

P(X—)Xh/n,’le;l:l,Q,...
2L 1

N[ 4L, —1
() Z

4L,
2L, —l

Lo =

Recognizing that Z ( ) = 24L+=2 then (72) sim-

plifies to

P(X = X|y,mel=1,2,..., L)y
4L, -1 (b2/2)
24L—1Z( 2L, —1 )Z n!

n=0

To compute the average PEP, one now averages over the distri-
butions of v;; and +y;>. Noting that b*/2 = ZzL:H (711 + m112),
then making use of the multinomial generating function, we ob-
tain the following statistical average for the i.i.d. case:

(3) = (-3)

- ¥

nit+ng+---+naL,.=

xp( - %2-) (73)

H MM (-1).

’"ll

(74)
"1

Thus, substituting (74) into (73), the average type 11 PEP be-
comes

P(X - X)

1 &[4l -1
TTALTT 2L 2L, -

)’i

n=0

P>

ni1t+nz+--+nerL,.=n

- (75)

M (nz
ny '712 ‘Mg, r! H
=1
For the Rayleigh fading channel, it is straightforward to show
that

nly”

) 0
M’Y ( 1) (1+7)n+1’

n=0,1,2,... (76)

Thus, using (76) in (75), one obtains a closed-form expression
for the average type II PEP over the Rayleigh channel. Asymp-
totically, in the limit of large SNR, (76) behaves as

M (-1) = —', n=20,1,2,. (77)
Since each term in (75) is of order 2L, in the MGF and its
derivatives, then asymptotically for large SNR, the average PEP
varies as 2L~ which immediately identifies the full diversity

(order 2L,) of the type II PEP performance.



As an example, consider the case L, = 2. Then, from (74)
we obtain

+12(M7(—1))2 (Mé”(—l)) ,
R

+36(21,(-1) (MO (-1)" (M2 (1))

+24M., (—1) (M§”(—1))3 :

(78)

which when used in (75) together with (76) gives for the
Rayleigh channel

P(X — X)H

1

—1—2—864

1
1+

1 29/ %
21 +7) *E(aw))

+§(L)2+ 3<_r>
4\ (1+%) 6\ (1+%)/ |
Finally, one can again use (68) and (75) in (48) to approxi-

mately evaluate the average BEP for M -ary orthogonal modula-
tion.

(79

VI. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
behavior of the expressions derived from the theoretical anal-
yses. In the numerical calculations, the signal-to-noise ratio
(SNR) is normalized pér receive antenna, i.e., SNR= 2%. Fig. 1
shows the PEPs and the approximate average BEP versus SNR
for binary orthogonal FSK with a single receive antenna. For
comparison purposes, this figure also contains a BEP perfor-
mance curve for noncoherent binary orthogonal FSK with a
single transmit antenna. We can clearly see the advantage of
transmit diversity obtained by combining noncoherent orthog-
onal modulation with STBC. Fig. 2 illustrates the approximate
average BEP versus SNR for M -ary orthogonal FSK with a sin-
gle receive antenna. The tradeoff between increased rate and
performance degradation can be observed. Similar curves are
shown in Fig. 3 and Fig. 4 for systems with more than one re-
ceive antenna. From the slope of the curves, we conclude that
noncoherent detection of orthogonal modulation combined with
Alamouti STBC achieves full spatial diversity.
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Fig. 1. PEPs and the approximate average BEP vs. SNR for binary
orthogonal FSK with a single receive antenna.
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Fig. 2. The approximate average BEP vs. SNR for M-ary orthogonal
FSK with a single receive antenna.

Before concluding, it is worthy of note that the key results of
this paper for the PEP performance as given by (68) and (75)
agree exactly with those derived from (B.10) in [11] and (B1) in
[12] which are given in another (integral) form (see also [25]).

VII. CONCLUSIONS

In this paper, we have investigated the performance of nonco-
herent detection of the orthogonal modulation combined with
STBC. We derived exact, compact closed-form expressions
for the PEP. We employed two methods, namely, the inverse
Laplace transform and the MGF-based approach to evaluate the
PEP. The MGF-based approach allows us to obtain the perfor-
mance for the generalized fading channel. Theoretical and nu-
merical results show that noncoherent detection of orthogonal
modulation combined with Alamouti STBC achieves full spa-
tial diversity. We also derived an approximate average bit error
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Fig. 3. PEPs and the approximate average BEP vs. SNR for binary
orthogonal FSK with multiple receive antennas.
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Fig. 4. The approximate average BEP vs. SNR for M-ary orthogonal
FSK with multiple receive antennas.

probability (BEP) for M -ary orthogonal signaling to character-
ize the tradeoff between increased rate and performance degra-
dation.
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