• Title/Summary/Keyword: Probability Density Function( PDF)

Search Result 200, Processing Time 0.022 seconds

Blind Equalizer Algorithms using Random Symbols and Decision Feedback (랜덤 심볼열과 결정 궤환을 사용한 자력 등화 알고리듬)

  • Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.343-347
    • /
    • 2012
  • Non-linear equalization techniques using decision feedback structure are highly demanded for cancellation of intersymbol interferences occurred in severe channel environments. In this paper decision feedback structure is applied to the linear blind equalizer algorithm that is based on information theoretic learning and a randomly generated symbol set. At the decision feedback equalizer (DFE) the random symbols are generated to have the same probability density function (PDF) as that of the transmitted symbols. By minimizing difference between the PDF of blind DFE output and that of randomly generated symbols, the proposed DFE algorithm produces equalized output signal. From the simulation results, the proposed method has shown enhanced convergence and error performance compared to its linear counterpart.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Analysis of the Mean and Standard Deviation due to the Change of the Probability Density Function on Tidal Elevation Data (조위의 확률밀도함수 변화에 따른 평균 및 표준편차 분석)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Lee, Khil-Ha;Kim, Tae-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • In the process of the probabilistic-based design on the coastal structures, the probability density function (pdf) of tidal elevation data is assumed as the normal distribution function. The pdf shape of tidal elevation data, however, is better-fitted to the double-peak normal distribution function and the equivalent mean and standard deviation (SD) estimation process based on the equivalent normal distribution is required. The equivalent mean and SD (equivalent parameters) are different with the mean and SD (normal parameters) estimated in the condition that the pdf of tidal elevation is normal distribution. In this study, the difference, i.e., estimation error, between equivalent parameters and normal parameters is compared and analysed. The difference is increased as the tidal elevation and its range are increased. The mean and SD differences in the condition of the tidal elevation is ${\pm}400cm$ are above 100 cm and about 80~100 cm, respectively, in Incheon station. Whereas, the mean and SD differences in the condition of the tidal elevation is ${\pm}60cm$ are very small values in the range of 2~4 cm, in Pohang station.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

ECG Denoising by Modeling Wavelet Sub-Band Coefficients using Kernel Density Estimation

  • Ardhapurkar, Shubhada;Manthalkar, Ramchandra;Gajre, Suhas
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.669-684
    • /
    • 2012
  • Discrete wavelet transforms are extensively preferred in biomedical signal processing for denoising, feature extraction, and compression. This paper presents a new denoising method based on the modeling of discrete wavelet coefficients of ECG in selected sub-bands with Kernel density estimation. The modeling provides a statistical distribution of information and noise. A Gaussian kernel with bounded support is used for modeling sub-band coefficients and thresholds and is estimated by placing a sliding window on a normalized cumulative density function. We evaluated this approach on offline noisy ECG records from the Cardiovascular Research Centre of the University of Glasgow and on records from the MIT-BIH Arrythmia database. Results show that our proposed technique has a more reliable physical basis and provides improvement in the Signal-to-Noise Ratio (SNR) and Percentage RMS Difference (PRD). The morphological information of ECG signals is found to be unaffected after employing denoising. This is quantified by calculating the mean square error between the feature vectors of original and denoised signal. MSE values are less than 0.05 for most of the cases.

Estimating the Moments of the Project Completion Time in Project Networks (프로젝트 네트워크에서 사업완성시간의 적률 추정)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • For a project network analysis, a fundamental problem is to estimate the distribution function of the project completion time. In this paper, we propose a method for evaluating moments(mean, variance, skewness, kurtosis) of the project completion time under the assumption that the durations of activities are independently and normally distributed. The proposed method utilizes the technique of discretization to replace the continuous probability density function(pdf) of activity duration with its discrete pdf and a random number generation. The proposed method is easy to use for large-sized project networks, and the computational results of the proposed method indicate that the accuracy is comparable to that of direct Monte Carlo simulation.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.657-666
    • /
    • 2020
  • A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

Performance Analysis of Distributed Antenna Systems with Antenna Selection over MIMO Rayleigh Fading Channel

  • Yu, Xiangbin;Tan, Wenting;Wang, Ying;Liu, Xiaoshuai;Rui, Yun;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3016-3033
    • /
    • 2014
  • The downlink performance of distributed antenna systems (DAS) with antennas selection is investigated in Rayleigh fading multicell environment, and the corresponding system capacity and bit error rate (BER) analysis are presented. Based on the moment generating function, the probability density function (PDF) and cumulative distribution function (CDF) of the effective signal to interference plus noise ratio (SINR) of the system are first derived, respectively. Then, with the available CDF and PDF, the accurate closed-form expressions of average channel capacity and average BER are further derived for exact performance evaluation. To simplify the expression, a simple closed-form approximate expression of average channel capacity is obtained by means of Taylor series expansion, with the performance results close to the accurate expression. Besides, the system outage capacity is analyzed, and an accurate closed-form expression of outage capacity probability is derived. These theoretical expressions can provide good performance evaluation for DAS downlink. It can be shown by simulation that the theoretical analysis and simulation are consistent, and DAS with antenna selection outperforms that with conventional blanket transmission. Moreover, the system performance can be effectively improved as the number of receive antennas increases.

Approximated Outage Probability for ADF Relay Systems with Burst MPSK and MQAM Symbol Transmission

  • Ko, Kyunbyoung;Lim, Sungmook
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • In this paper, we derive the outage probability for M-ary phase shifting keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) burst transmission (BT) of adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, we focus on ADF relay systems in which the probability density function (PDF) is derived on the basis of error events at relay nodes corresponding to channel estimation errors. Next, the average outage probability is derived as an approximate expression for an arbitrary link signal-to-noise ratio (SNR) for different modulation orders. Its accuracy is demonstrated by comparison with simulation results. Further, it is confirmed that BT-ADF relay systems with pilot symbol based channel estimation schemes enables to select correctly decoded relay nodes without additional signaling between relay nodes and the destination node, and it is verified that the ideal performance is achieved with small SNR loss.