• Title/Summary/Keyword: Probabilistic variation

Search Result 172, Processing Time 0.034 seconds

A Study on the Probabilistic Reliability Evaluation of Power System Considering Wind Turbine Generators with A simplified Multi-state Model (간략화한 다개상태 모델을 갖는 풍력발전계통을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Wu, Liang;Park, Jeong-Je;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.271-272
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc are becoming important stage by stage, considering the effect of environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. What's more, due to wind speed random variation the wind turbine generators can not make two-state model as conventional generators. The method of obtaining reliability evaluation indices of wind turbine generators is different from the conventional generators. This paper presents a study on the reliability evaluation of power system considering wind turbine generators with a simplified multi-state model.

  • PDF

Influence of Geometric Initial Imperfection on the First Buckling Time Variation of Cylinder Under Impact Load (충격하중을 받는 원통의 최초좌굴시간의 변동성에 대한 기하학적 초기결함의 영향)

  • 김두기
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-183
    • /
    • 1997
  • In this paper a method is suggested for the probabilistic analysis of impact buckling failure time of cylinder with random axisymmetric geometric imperfection under axial impact. Failure is assumed as axisymmetric radial deformation exceeds the given criteria for the first time. For the generation of random geometric initial imperfection, random field theory by mean function and autocorrelation function of geometric imperfection is used. Suggested method is useful for the treatment of the randomness of realistic geometric imperfection and can be used for the structural safety analysis of cylinder considering its effect.

  • PDF

Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.431-458
    • /
    • 2014
  • Construction of a new cavern close to an existing cavern will result in a modification of the state of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. Extensive plane strain finite difference analyses were carried out to examine the deformations induced by excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the maximum key point displacement and the percent strain to various parameters including the rock quality, the cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built MARS model. Parametric studies indicate that the probability of failure $P_f$ increases as the coefficient of variation of Q increases, and $P_f$ decreases with the widening of the pillar.

Climate change and design wind load concepts

  • Kasperski, Michael
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.145-160
    • /
    • 1998
  • In recent years, the effects of a possible climate change have been discussed in regard to wind loading on buildings and structures. Simple scenarios based on the assumption of global warming suggest an increase of storm intensities and storm frequencies and a possible re-distribution of storm tracks. Among recent publications, some papers seem to verify these scenarios while others deny the influence of climatic change. In an introductory step, the paper tries to re-examine these statements. Based on meteorological observations of a weather station in Germany, the existence of long-term trends and their statistical significance is investigated. The analysis itself is based on a refined model for the wind climate introducing a number of new basic variables. Thus, the numerical values of the design wind loads used in modern codes become more justified from the probabilistic point of view.

A Probabilistic Forecasting System on the Tendency of Variation of Korea Composite Stock Price Index (한국종합주가지수 변동 경향에 대한 확률적 예측 시스템)

  • Kang, Byeong-Woo;Han, Dong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.500-504
    • /
    • 2006
  • 본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.

  • PDF

Probabilistic Service Life Evaluation for OPC Concrete under Carbonation Considering Cold Joint and Induced Stress Level (콜드조인트 및 재하 응력을 고려한 탄산화에 노출된 OPC 콘크리트의 확률론적 내구수명평가)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.45-52
    • /
    • 2019
  • Steel corrosion due to carbonation in RC (Reinforced Concrete) structures easily occurs in urban cities with high CO2 concentration. RC structures are always subjected to external loading with various boundary conditions. The induced stress level causes changes in diffusion of harmful ion like CO2. In this work, a quantification of carbonation progress with stress level is carried out and carbonation prediction is derived through the relations. Determining the design parameters like cover depth, CO2 diffusion coefficient, carbonatable materials, and exterior CO2 concentration as random variables, service lifes under carbonation with design parameter's variation are obtained through MCS(Monte Carlo Simulation). Additionally the service life with different stress level is derived and the results are compared with those from deterministic method. Cover depth and cement hydrates are evaluated to be very effective to resist carbonation, and the proposed method which can consider the effect of stress on service life can be applied to maintenance priority determination.

Experimental Investigations on Slamming Impacts by Drop Tests (낙하실험에 의한 슬래밍 충격의 실험 연구)

  • Shin, Hyun-Kyoung;Kim, Sung-Chul;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.410-420
    • /
    • 2010
  • When ships are sailing with large motions in rough waves, the slamming phenomenon occurs and the ships suffer from impulsive pressure loadings. Recently, ships are becoming lager and faster than before and it becomes more possible that the ships experience larger impacts on their bows and sterns. Many researchers have been performing the investigations on slamming experimentally and theoretically for a long time. Most of the research reported in the open literature focused on how to accurately estimate the amplitude of the peak pressure of slamming. According to the results of a recently published work, not only the amplitude of peak pressure but also the width of the peak may play an important role in predicting the extents of damage of impacted structures. The uncertainty of impulsive pressure loadings due to slamming has been indicated by many researchers. However, probabilistic treatments of the impulsive pressure loadings are few. In this study, drop tests were conducted on wedges having dead-rise angles of $0^{\circ}$ and $10^{\circ}$. Not only the amplitude of peak pressure but also the width of peak pressure were measured. Furthermore, the variations of those values are also provided for the probabilistic approach of the slamming problem.

Stochastic population projections on an uncertainty for the future Korea (미래의 불확실성에 대한 확률론적 인구추계)

  • Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.185-201
    • /
    • 2020
  • Scenario population projection reflects the high probability of future realization and ease of statistical interpretation. Statistics Korea (2019) also presents the results of 30 combinations, including special scenarios, as official statistics. However, deterministic population projections provide limited information about future uncertainties with several limitations that are not probabilistic. The deterministic population projections are scenario-based estimates and show a perfect autocorrelation of three factors (birth, death, movement) of population variation over time. Therefore, international organizations UN, the Max Planck Population Research Institute (MPIDR) of Germany and the Vienna Population Research Institute (VID) of Austria have suggested stochastic based population estimates. In addition, some National Statistics Offices have also adopted this method to provide information along with the scenario results. This paper calculates the demographics of Korea based on a probabilistic or stochastic basis and then draws the pros and cons and show implications of the scenario (deterministic) population projections.

Simulation on Optimum Repairing Number of Carbonated RC Structure Based on Probabilistic Approach (확률론을 고려한 탄산화된 RC 구조물의 최적 보수시기 해석)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.230-238
    • /
    • 2017
  • Carbonation is a representative deterioration for underground structure, which causes additional repair for service life. This study proposes a simplified equation for optimum repair timing without complicated probability calculation, considering initial and repair conditions For the work, initial service life, extended service life through repair, and their COVs(Coefficient of Variation) are considered, and the periods which can reduce number of repair are evaluated. Assuming the two service lives to be independent, the repair timings are derived from 10 to 50 years based on the probabilistic method, and the regression analysis technique for optimum repairing timing is proposed. Decreasing COV has insignificant effect on reducing repairing number but shows a governing effect on changes in probability near the critical repairing stage. The extension of service life through repairing is evaluated to be a critical parameter for reducing repairing number. The proposed technique can be efficiently used for maintenance strategy with actual COV of initial and additional service life due to repairing.

Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties (물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가)

  • Kim, Hojoon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.