In recent years, the importance of managing software defects in the implementation stage has emerged because of the rapid development and wide-range usage of intelligent smart devices. Even if not a few studies have been conducted on the prediction models for software defects, their outcomes have not been widely shared. This paper proposes an efficient probabilistic management model of software metrics based on the Bayesian network, to overcome limits such as binary defect prediction models. We expect the proposed model to configure the Bayesian network by taking advantage of various software metrics, which can help in identifying improvements for refactoring. Once the source code has improved through code refactoring, the measured related metric values will also change. The proposed model presents probability values reflecting the effects after defect removal, which can be achieved by improving metrics through refactoring. This model could cope with the conclusive binary predictions, and consequently secure flexibilities on decision making, using indeterminate probability values.
Many studies based on I-vector have been conducted in a variety of environments, from text-dependent short-utterance to text-independent long-utterance. In this paper, we propose a speaker verification system employing a combination of I-vector with Probabilistic Linear Discriminant Analysis (PLDA) and speaker embedding of Long Short Term Memory (LSTM) with attention mechanism in far-field and noisy environments. The LSTM model's Equal Error Rate (EER) is 15.52 % and the Attention-LSTM model is 8.46 %, improving by 7.06 %. We show that the proposed method solves the problem of the existing extraction process which defines embedding as a heuristic. The EER of the I-vector/PLDA without combining is 6.18 % that shows the best performance. And combined with attention-LSTM based embedding is 2.57 % that is 3.61 % less than the baseline system, and which improves performance by 58.41 %.
Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).
This study is based on the recognition that the school mathematics education should reinforce the heuristic and constructional aspects related with discoveries of mathematical rules and understanding of mathematical concepts from real world situations as well as the deductive and formal aspects emphasizing on mathematical contents precisely. The 11th grade students of one class from a city high school with average were chosen. They were given time to learn various functions of Excel in regular classes of "Information Society and Computer" subject. They don't have difficulty using cells, mathematical functions and statistical functions in spreadsheet. Experiment was performed for six weeks and there were two hours of classes in a week. Considering the results of this research, teaching materials using spreadsheets play an important role in helping students to experience probabilistic and statistical reasoning and construct mathematical thinking. This implies that teaching materials using spreadsheet provide students with an opportunity to interact with probabilistic and statistical situations by adopting engineering which can encourage students to observe and experience various aspects of real world in authentic situations.
Many studies on sustained droughts have often been limited to the analysis of historic flow series. A major disadvantage in this approach can be described as the lack of long historic flow records needed to obtain a significant number of drought events for the analysis. To overcome this difficulty, one of the present study idea is to use synthetically generated hydrologic series. A methodology is presented to develop flow series based on the probabilistic analysis of the stochastic properties of the observed flows. The method can be utilized to generate a flow series of desired length so as to include many multiyear drought events within the process. In this paper, a concept of creating multiyear drought scenarios is introduced, and its development procedure is illustrated by a case study of the water supply system in Han River Basin. Also, it was found that the generated flow series can be reliably used to predict the long drought duration and sustained drought hydrologic scenarios within a given return period.
Journal of the Korea institute for structural maintenance and inspection
/
v.17
no.6
/
pp.1-10
/
2013
Probabilistic nonlinear first ply failure loads of flat composite panels and nonlinear buckling loads of curved composite panels with cutouts are estimated to provide the more reliable main load carrying structure in the renewable energy industry and offshore structures. The response surface method approximates limit state surface to a second order polynomial form of random variables with the results of deterministic finite element analyses at given sampling design points. Furthermore, the iterative linear interpolation scheme is used to obtain a more accurate approximation of the limit state surface near the most probable failure point (MPFP). The advanced first order second moment method and the Monte Carlo method are performed on an approximated limit state surface to evaluate the probability of failure. Finally, the sensitivity of the reliability index with respect to transformed random variables is investigated to figure out the main random variables that have an effect on failures.
There is need to reform the road-based logistic transportation system into the railway-based logistics transportation system in order to decrease the total social cost related with logistics transportation. And new transportation modes such as dual mode trailer (DMT) are under consideration, which are expected to decrease current market share of road. But, most of current studies about estimating economical efficiency are focused on developing the probabilistic choice model and then estimating the market share of each mode. We present an approach to compute the optimal market share of each mode in terms of total social cost. To do so, we suggest an optimization model capturing both user choice to maximize his utility and subsidy policy intended to minimize total social cost, simultaneously. Using this model, we present the optimal modal split of container freight.
International conference on construction engineering and project management
/
2022.06a
/
pp.328-335
/
2022
With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.
To reinforce and improve the soft ground under a breakwater while using materials efficiently, the replacement ratio and leaving periods of surcharge load are optimized probabilistically. The results of Bayesian updating of the random variables using prior information decrease uncertainty by up to 39.8%, and using prior information with more samples results in a sharp decrease in uncertainty. Replacement ratios of 15%-40% are analyzed using First Order Reliability Method and Monte Carlo simulation to optimize the replacement ratio. The results show that replacement ratios of 20% and 25% are acceptable at the column jet grouting area and the granular compaction pile area, respectively. Life cycle costs are also compared to optimize the replacement ratios within allowable ranges. The results show that a range of 20%-30% is the most economical during the total life cycle. This means that initial construction cost, maintenance cost and failure loss cost are minimized during total life cycle. Probabilistic analysis for leaving periods of shows that three months acceptable. Design optimization with respect to life cycle cost is important to minimize maintenance costs and retain the performance of the structures for the required period. Therefore, more case studies that consider the maintenance costs of soil structures are necessary to establish relevant design codes.
Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.14
no.4
/
pp.423-434
/
2016
The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.