• Title/Summary/Keyword: Probabilistic Risk Assessment

Search Result 308, Processing Time 0.028 seconds

Revision of the Railway Human Reliability Analysis Procedure and Development of an R-HRA Software (철도사고 위험도평가를 위한 철도 인간신뢰도분석 방법의 개정과 전산 소프트웨어의 개발)

  • Kim, Jae-Whan;Kim, Seung-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.404-409
    • /
    • 2008
  • This paper consists largely of two parts: the first part introduces the revised railway human reliability analysis (R-HRA) method which is to be used under the railway risk assessment framework, and the second part presents the features of a computer software which was developed for aiding the R-HRA process. The revised R-HRA method supplements the original R-HRA method by providing a specific task analysis guideline and a classification of performance shaping factors (PSFs) to support a consistent analysis between analysts. The R-HRA software aids the analysts in gathering information for HRA, qualitative error prediction including identification of external error modes and internal error modes, quantification of human error probability, and reporting the overall analysis results. The revised R-HRA method and software are expected to support the analysts in an effective and efficient way in analysing human error potential in railway event or accident scenarios.

Application of Risk-Informed Methods to In-Service Piping Inspection in Framatome Type Nuclear Power Plants (프라마톰형 원전의 배관 가동중검사에 리스크 정보를 활용한 기법 적용)

  • Kim, Jin-Hoi;Lee, Jeong-Seok;Yun, Eun-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2014
  • The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI' sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.

Probabilistic exposure assessment, a risk-based sampling plan and food safety performance evaluation of common vegetables (tomato and brinjal) in Bangladesh

  • Mazumder, Mohammad Nurun-Nabi;Bo, Aung Bo;Shin, Seung Chul;Jacxsens, Liesbeth;Akter, Tahmina;Bir, Md. Shahidul Haque;Aktar, Most Mohshina;Rahman, Md. Habibur;WeiQiang, Jia;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • Along with the widespread use of pesticides in the world, concerns over human health impacts are rapidly growing. There is a large body of evidence on the relationship between the exposure to pesticides and the elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. This research assessed the health risk of pesticide residues by the dietary intake of vegetables collected from the agro-based markets of Dhaka, Bangladesh. As some of the banned pesticides were also found in vegetable samples, they may pose a higher risk because of cheaper availability and hence the government of Bangladesh should take strong measures to control these banned pesticides. Five organo phosphorus (chlorpyrifos, parathion, ethion, acephate, fenthion) and two carbamate (carbaryl and carbofuran) pesticide residues were identified in twenty four samples of two common vegetables (tomato and brinjal). The pesticide residues ranged from below a detectable limit (< 0.01) to 0.36 mg·kg-1. Acephate, chlorpyrifos, ethion, and carbaryl were detected in only one sample, while co-occurrence occurred twice for parathion. Continuous monitoring and strict regulation should be enforced regarding the control of pesticide residues in fresh vegetables and other food commodities in Bangladesh.

Effect of Change of Reactor Coolant Injection Method on Risk at Loss of Coolant Accident due to Beam Tube Rupture (빔튜브파단 냉각재상실사고시 원자로냉각수 보충방법 변경이 리스크에 미치는 영향)

  • Lee, Yoon-Hwan;Lee, Byeonghee;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • A new method for injecting cooling water into the Korean research reactor (KRR) in the event of beam tube rupture is proposed in this paper. Moreover, the research evaluates the risk to the reactor core in terms of core damage frequency (CDF). The proposed method maintains the cooling water in the chimney at a certain level in the tank to prevent nuclear fuel damage solely by gravitational coolant feeding from the emergency water supply system (EWSS). This technique does not require sump recirculation operations described in the current procedure for resolving beam tube accidents. The reduction in the risk to the core in the event of beam tube rupture that can be achieved by the proposed change in the cooling water injection design is quantified as follows. 1) The total CDF of the KRR for the proposed design change is approximately 4.17E-06/yr, which is 8.4% lower than the CDF of the current design (4.55E-06/yr). 2) The CDF for beam tube rupture is 7.10E-08/yr, which represents an 84.1% decrease compared with that of the current design (4.49E-07/yr). In addition to this quantitative reduction in risk, the modified cooling water injection design maintains a supply of pure coolant to the EWSS tank. This means that the reactor does not require decontamination after an accident. Thermal hydraulic analysis proves that the water level in the reactor pool does not cause damage to the nuclear fuel cladding after beam tube rupture. This is because the amount of water in the chimney can be regulated by the EWSS function. The EWSS supplies emergency water to the reactor core to compensate for the evaporation of coolant in the core, thus allowing water to cover the fuel assemblies in the reactor core over a sufficient amount of time.

Seismic Performance Management of Aged Road Facilities Using Deterministic Method vs. Probabilistic Method (확률론적 및 결정론적 방법을 이용한 노후도로시설물 내진성능관리)

  • Kim, Dong Joo;Choi, Ji Hye;Lee, Do Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.455-463
    • /
    • 2020
  • Road facilities with a service life of more than 30 years are expected to triple in the next ten years. The seismic performance of road facilities should be reviewed with consideration of the "Common Application of Seismic Design Standards" issued by Korea's Ministry of Public Administration and Security in 2017. These standards should be applied to all existing road facilities, including retrofitted or seismic-designed facilities, for evaluating seismic performance. In order to manage seismic performance for a large number of facilities, decision-support technology that can provide economic and reliable results is needed. However, the indices method currently used in Korea is a deterministic method, and the seismic performance of individual facilities is evaluated based on qualitative indices so that only retrofitting among road facilities is prioritized. In turn, with the indices method, it is difficult to support decisions other than the decision to prioritize retrofitting. Therefore, it is necessary to use the seismic risk assessment method to overcome such shortcomings and provide useful information such as direct loss, indirect socio-economic loss, and benefit of the investment.

Assessment of Viral Attenuation in Soil Using Probabilistic Quantitative Model (확률적 정량모델을 이용한 토양에서의 바이러스 저감 평가)

  • Park, Jeong-Ann;Kim, Jae-Hyun;Lee, In;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.544-551
    • /
    • 2011
  • The objective of this study was to analyze VIRULO model, a probabilistic quantitative model, which had been developed by US Environmental Protection Agency. The model could assess the viral attenuation capacity of soil as hydrogeologic barrier using Monte Carlo simulation. The governing equations used in the model were composed of unsaturated flow equations and viral transport equations. Among the model parameters, those related to water flow for 11 soil types were from UNDODA data, and those related to 5 virus species were from the literatures. The model compared the attenuation factor with threshold of attenuation to determine the probability of failure and presented the exceedances and Monte Carlo runs as output. The analysis indicated that among 11 USDA soil types, the viral attenuation capacity of loamy sand and sand were far lower than those of clay and silt soils. Also, there were differences in the attenuation in soil among 5 viruses with poliovirus showing the highest attenuation. The viral attenuation capacity of soil decreased sharply with increasing soil water content and increased nonlinearly with increasing soil barrier length. This study indicates that VIRULO model could be considered as a useful screening tool for viral risk assessment in subsurface environment.

Quantitative Microbial Risk Assessment Model for Staphylococcus aureus in Kimbab (김밥에서의 Staphylococcus aureus에 대한 정량적 미생물위해평가 모델 개발)

  • Bahk, Gyung-Jin;Oh, Deog-Hwan;Ha, Sang-Do;Park, Ki-Hwan;Joung, Myung-Sub;Chun, Suk-Jo;Park, Jong-Seok;Woo, Gun-Jo;Hong, Chong-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-491
    • /
    • 2005
  • Quantitative microbial risk assessment (QMRA) analyzes potential hazard of microorganisms on public health and offers structured approach to assess risks associated with microorganisms in foods. This paper addresses specific risk management questions associated with Staphylococcus aureus in kimbab and improvement and dissemination of QMRA methodology, QMRA model was developed by constructing four nodes from retail to table pathway. Predictive microbial growth model and survey data were combined with probabilistic modeling to simulate levels of S. aureus in kimbab at time of consumption, Due to lack of dose-response models, final level of S. aureus in kimbeb was used as proxy for potential hazard level, based on which possibility of contamination over this level and consumption level of S. aureus through kimbab were estimated as 30.7% and 3.67 log cfu/g, respectively. Regression sensitivity results showed time-temperature during storage at selling was the most significant factor. These results suggested temperature control under $10^{\circ}C$ was critical control point for kimbab production to prevent growth of S. aureus and showed QMRA was useful for evaluation of factors influencing potential risk and could be applied directly to risk management.

Arsenic Contamination of Polished Rice Produced in Abandoned Mine Areas and Its Potential Human Risk Assessment using Probabilistic Techniques (폐광지역에서 생산된 백미 중 비소오염도와 확률론적 기법을 이용한 인체 위해성 평가)

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Paik, Min-Kyung;Park, Byung-Jun;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the arsenic (As) contaminations in polished rice cultivated nearby abandoned mine areas, and to estimate the potential health risk through dietary intake of As-enriched polished rice in each age-gender population. METHODS AND RESULTS: The As contents in polished rice grown fifteen abandoned mine areas were analyzed. The average daily intake (ADD) as well as probabilistic health risk were estimated by assuming probability distribution of exposure parameters. The average total As concentration in polished rice was $0.09{\pm}0.06$ mg/kg with a range of 0.02~0.35 mg/kg. For health risk assessment, the ADD values in all age-gender populations did not exceed the provisional tolerable daily intake (PTDI) of 2.1 ${\mu}g/kg$ b.w./day for inorganic As. Cancer risk probability (R) values were $2.45{\sim}3.28{\times}10^{-4}$ and $2.51{\sim}5.75{\times}10^{-4}$ for all age population and gender population, respectively. Particularly, the R value, $5.75{\times}10^{-4}$, for children less than six years old were estimated to be high. Hazard quotient (HQ) values were 0.23~0.31 and 0.11~0.33 for general population and age-gender population, respectively. CONCLUSION(s): The average R values assessed via intake of polished rice cultivated in abandoned mine areas exceeded the acceptable cancer risk of $10^{-6}{\sim}10^{-4}$ for regulatory purpose. Considering the HQ values smaller than 1.0, potential non-cancer toxic effects may not be caused by the long-time exposure through intake of As-contaminated polished rice.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information (공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가)

  • Lee, Seonyoung;Oh, Seokhoon
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2019
  • A seismic hazard map based on spatial analysis of various sources of geologic seismic information was developed and assessed for regional seismic vulnerability in South Korea. The indicators for assessment were selected in consideration of the geological characteristics affecting the seismic damage. Probabilistic seismic hazard and fault information were used to be associated with the seismic activity hazard and bedrock depth related with the seismic damage hazard was also included. Each indicator was constructed of spatial information using GIS and geostatistical techniques such as ordinary kriging, line density mapping and simple kriging with local varying means. Three spatial information constructed were integrated by assigning weights according to the research purpose, data resolution and accuracy. In the case of probabilistic seismic hazard and fault line density, since the data uncertainty was relatively high, only the trend was intended to be reflected firstly. Finally, the seismic activity hazard was calculated and then integrated with the bedrock depth distribution as seismic damage hazard indicator. As a result, a seismic hazard map was proposed based on the analysis of three spatial data and the southeast and northwest regions of South Korea were assessed as having high seismic hazard. The results of this study are expected to be used as basic data for constructing seismic risk management systems to minimize earthquake disasters.