• Title/Summary/Keyword: Probabilistic Life Assessment

Search Result 61, Processing Time 0.034 seconds

Evaluation of the Railroad Track Life Cycle Based on the Metro Rail Wear Data Regression Analysis (지하철 마모 데이터 회귀분석을 통한 궤도 수명 평가)

  • Jeong, Min-Chul;Kim, Jung-Hoon;Lee, Jee-Ha;Kang, Yun-Suk;Kong, Jung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.86-93
    • /
    • 2010
  • The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

Probabilistic Life Assessment for Stress Corrosion Crack Growth of Thermal Power Plant Components (화력발전설비의 응력부식 균열성장에 대한 확률론적 수명평가)

  • Gang, Myeong-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.138-143
    • /
    • 2000
  • 화력발전설비의 주요 손상 요인 중의 하나인 응력부식 균열 성장에 대한 확률론적 잔존 수명평가에 대하여 연구하였으며, 손상해석 및 수명평가에 확률해석 기법을 도입한 확률론적 수명평가 프로그램을 개발하였다. 확률론적 수명평가는 재료물성치, 형상, 하중조건, 운전조건 등과 같은 불확실성과 변동 가능성을 고려하여 해석을 수행하며, 일정 시간 운전후 구조물의 손상이 일어날 확률을 예측하는 것이다. 응력부식 균열 성장에 대한 확률론적 잔존 수명평가 연구를 통하여 확률론적 수명평가 기술의 기반을 구축하였으며, 다른 손상기구에 대한 확률론적 수명평가를 수행하여 발전설비에 발생하는 모든 손상에 대하여 확률론적 수명평가가 가능하도록 확대할 계획이다.

  • PDF

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Probabilistic Risk Analysis of Dropped Objects for Corroded Subsea Pipelines (부식을 고려한 해저 파이프라인의 확률론적 중량물 낙하 충돌 위험도 해석)

  • Kumar, Ankush;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.93-102
    • /
    • 2018
  • Quantitative Risk Assessment (QRA) has been used in shipping and offshore industries for many years, supporting the decision-making process to guarantee safe running at different stages of design, fabrication and throughout service life. The assessments of a risk perspective are informed by the frequency of events (probability) and the associated consequences. As the number of offshore platforms increases, so does the length of subsea pipelines, thus there is a need to extend this approach and enable the subsea industry to place more emphasis on uncertainties. On-board operations can lead to objects being dropped on subsea pipelines, which can cause leaks and other pipeline damage. This study explains how to conduct hit frequency analyses of subsea pipelines, using historical data, and how to obtain a finite number of scenarios for the consequences analysis. An example study using probabilistic methods is used.

Probabilistic Fatigue Crack Growth Behavior under Constant Amplitude Loads (일정진폭하중하의 확률론적 피로균열전파거동)

  • Jeong, Hyeon-Cheol;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.923-929
    • /
    • 2003
  • In this paper, an analysis of fatigue crack growth behavior from a statistical point of view has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. Fatigue crack growth rate data shows a normal distribution for both m and logC. A strong negative linear correlation exists between the coefficient C and the exponent m.

A Study on the Probabilistic Vulnerability Assessment of COTS O/S based I&C System (상용 OS기반 제어시스템 확률론적 취약점 평가 방안 연구)

  • Euom, Ieck-Chae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.35-44
    • /
    • 2019
  • The purpose of this study is to find out quantitative vulnerability assessment about COTS(Commercial Off The Shelf) O/S based I&C System. This paper analyzed vulnerability's lifecycle and it's impact. this paper is to develop a quantitative assessment of overall cyber security risks and vulnerabilities I&C System by studying the vulnerability analysis and prediction method. The probabilistic vulnerability assessment method proposed in this study suggests a modeling method that enables setting priority of patches, threshold setting of vulnerable size, and attack path in a commercial OS-based measurement control system that is difficult to patch an immediate vulnerability.

Application of the French Codes to the Pressurized Thermal Shocks Assessment

  • Chen, Mingya;Qian, Guian;Shi, Jinhua;Wang, Rongshan;Yu, Weiwei;Lu, Feng;Zhang, Guodong;Xue, Fei;Chen, Zhilin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1423-1432
    • /
    • 2016
  • The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the "screening criterion" for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no "screening criterion". In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

Development of evaluation method for the railroad track life cycle considering environmental effect factors (환경영향인자를 고려한 궤도수명산정 기법 개발)

  • Kong, Jung-Sik;Jeong, Min-Chul;Kim, Jung-Hoon;Lee, Won-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.167-172
    • /
    • 2011
  • Generally, the analysis of railroad wear data is most effective method for the efficient railway maintenance. The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

  • PDF

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.

Reliability of articulated tower joint against random base shear

  • Islam, Nazrul;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.33-48
    • /
    • 2007
  • An Articulated tower is one of the compliant offshore structures connected to the sea-bed through a universal joint which is the most vulnerable location of the tower that sustains the randomly fluctuating shear stresses. The time history response of the bottom hinge shear is obtained and presented in the spectral form. The fatigue and fracture reliability assessment of the tower joint against randomly varying shear stresses have been carried out. Non-linear limit state functions are derived in terms of important random variables using S-N curve and fracture mechanics approaches. Advanced First Order Reliability Method is used for reliability assessment. Sensitivity analysis shows the influence of various variables on the hinge safety. Fatigue life estimation has been made using probabilistic approach.